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1. Introduction

This document contains the supplementary materials that
were left our in our main submission since they are too de-
tailed for and do not significantly enhance the message we
want to convey. Section 2 presents an incremental strategy
for training GAN with a discriminator perceptual losses.
Section 3 explains in detail the adversarial loss function
mentioned in the main paper. The model architecture and
hyperparameters are shown in Sec. 4. Finally, more qualita-
tive and quantitative results for ablation study are presented
in Sec. 5.

We provide all code that is necessary to reproduce
the experiments reported in the paper and supplementary
at https://github.com/anonyr7/Sinogram-
Inpainting. This git-repository contains PyTorch im-
plementations for our proposed networks, state-of-the-art
methods, our CT dataset and a sub-set of around 30 images
as examples for evaluation of each model.

2. Discriminator Perceptual Loss

We present an alternative training strategy using the DP
loss in Alg. 1. We show the example procedure with a super-
resolution task that learns from a low-resolution (LR) image
to a high-resolution (HR) image. We start by training the
discriminator once in every generator iteration, then incre-
ment the discriminator iteration by one in every k generator
iterations, where k is an arbitrary constant, for which we
chose k = 10 in our paper. The intuition is that with more
training performed, the discriminator learns better high-
level features, thus benefits the generator using the DP loss.

*The first two authors have equal contribution.

Algorithm 1: An Incremental Training Procedure
of a naive Super-Resolution GAN with DP loss.

Data: LR and HR images; Generator training
iteration n; Discriminator increment period k.

Result: Super-resolved (SR) images.
while not converge or iteration i ≤ n do

Sample a batch of LR and HR image pairs x and
y from the training data;

Generate a SR image G(x) from generator G;
while discriminator iteration j ≤

⌈
i/k

⌉
do

Update discriminator D with Ladv(D);
j = j+1;

end
Calculate LDP from D using G(x) and y;
Update G with LDP and Ladv(G);
i = i+1;

end

3. Objective Function Details
3.1. Adversarial Loss

For a typical GAN network that generates images from
corrupted input x to target distribution y, the adversarial
losses for the generator and discriminator are defined as:

Ladv(G) =Ex∼corrupt[log(1−D(G(x)))],

Ladv(D) =
1

2
(Ey∼target[logD(y)]+

Ex∼corrupt[log(1−D(G(x))]),

(1)

where G and D represent the generator and discriminator
networks, respectively.

Equation 1 applies to the SIN with global discriminator
and PRN model. For the local discriminator of SIN, a pair
of image patches G(x)patch and ypatch randomly selected
from the generated image G(x) and target image y pair are
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used for calculating an additional local adversarial cost for
SIN:

Llocal adv(G) =Ex∼corrupt[log(1−D(G(x)patch))],

Llocal adv(D) =
1

2
(Ey∼target[logD(ypatch)]+

Ex∼corrupt[log(1−D(G(x)patch)]),
(2)

Therefore, the total adversarial loss for SIN is the sum of
Eq. 1 and Eq. 2 with equal weights.

4. More Training Details
4.1. Detailed Architecture

As discussed in the main paper, our generator uses an
adapted U-Net architecture, which consists of four average
pooling and four bilinear upsampling layers, each scales by
a factor of two in both dimensions. Each of the scaling lay-
ers is followed by a double-conv block, which consists of
two sets of convolution, ReLU activation and batch normal-
ization layers. All convolution layers in the U-Net have ker-
nel size of three and stride equal to one.

We also use a patch discriminator [2], where the first and
last convolution layers have kernel size of three and stride
of one, and the middle two convolutions have kernel size
of four and stride of two. It also includes LeakyReLU ac-
tivation and batch normalization layers. In total, the patch
discriminator outputs a patch of size 1/4×1/4 than before.

Please find the implemention of this architecture here:
https : / / github . com / anonyr7 / Sinogram -
Inpainting/blob/master/SIN/model.py

4.2. Data Augmentation

We augment our dataset by applying random affine trans-
formation to each image. Specifically, we randomly per-
form the following operations: rotate between ±30◦, trans-
late in two dimensions between ±0.1, scale by 0.5 to 1.1,
and shear between ±20◦. Such augmented images are only
used for training phase, in order to bring more diversity to
both sinogram and reconstruction training sets.

The code for our data augmentation is found in this
Jupyter notebook: https://github.com/anonyr7/
Sinogram- Inpainting/blob/master/TCIA_
data_preprocessing.ipynb

5. More Results from Ablation Study and
State-of-the-Art

In this section, we show complement of the ablation
study discussed in the main paper. Specifically, we present
more visual results of different composition of our models,
analysis of the cascaded inputs and more sinogram-domain
results for our discriminator perceptual loss.

5.1. Checkerboard Artifacts in Sinograms

We present more sinogram results from the cGAN model
introduced by Ghani et al [1] in Fig. 3. The sino-
grams exhibit streak artifacts especially on the boundary
areas, causing the reconstructions to have skewed streak
artifacts. More examples can be found at https://
github.com/anonyr7/Sinogram-Inpainting/
tree/master/Toy-Dataset/CGAN_sinogram.

5.2. Qualitative comparison among our models

We present the visual results of different compositions
of our models in Fig. 1, corresponding to the quantitative
metrics among our models in the main paper. We show that
although a single PRN model generates smooth and clean
images, they still either suffer from unremoved streak arti-
facts or hallucinate wrong details that are critical in anal-
ysis of the reconstructions. Meanwhile, we also observe
secondary artifacts from single SIN model. This is in cor-
respondence with our argument that single-domain mod-
els are not enough for SV-CT reconstruction tasks, and our
SIN-4c-PRN model benefits from both domain representa-
tions.

5.3. Effectiveness of cascade inputs of PRN

Our proposed model SIN-4c-PRN is a concatenation of
SIN and PRN models trained in two steps. In particular, we
propose a four-channel input for PRN that consists of re-
constructions from sinograms with different undersampling
factors.

Specifically, we create an input with each channel being
a FBP reconstruction from a sinogram with 23, 45, 90 and
180 angles, respectively. The 23-angle sinogram is the orig-
inal sparse-view sinogram, and the intermediate angles are
downsampled from the 180-angle SIN-inpainted sinogram.

In order to make fair comparisons of the proposed cas-
cade inputs, we train two networks with the same capac-
ity, i.e., number of learnable parameters. SIN-4x-PRN is a
model with a repeated four-channel input, each channel be-
ing the same FBP reconstruction from the 180-angle SIN-
inpainted sinogram. We compare the performance of SIN-
4x-PRN with SIN-4c-PRN in Tb. 1. Both PSNR and SSIM
metrics show that SIN-4c-PRN performs better than SIN-
4x-PRN, indicating that the model learns from the cascaded
inputs with different level of representations.

5.4. Sinogram results for different perceptual losses

We qualitatively and quantitatively compare the sino-
gram results of our DP loss with the original VGG16 per-
ceptual loss [3] trained with a SIN model. The SIN model
learns 1D super-resolution from a 23-angle sparse-view
sinogram to a 180-angle full-view sinogram. The models
used for comparison share the same architecture, data and
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21.79 0.446 31.40 0.810 32.08 0.831 32.99 0.858 33.44 0.865 PSNR SSIM

23.66 0.515 34.30 0.869 35.82 0.887 36.24 0.898 36.32 0.903 PSNR SSIM

26.19 0.558

(a) Sparse-View

32.55 0.887

(b) PRN

34.14 0.894

(c) SIN

34.67 0.920

(d) SIN-PRN

35.75 0.919

(e) SIN-4c-PRN

PSNR SSIM

(f) Ground Truth

Figure 1: Ablation comparison with zoom-in details. From top to bottom row: Chest: While PRN generates a visually clean
image, it losses important details such as the bones in the blue box. In contrast, SIN-4c-PRN provides both smooth and
detail-preserved reconstructions. Abdomen: PRN fails to remove the heavy streak artifacts in the green box area. Head:
PRN hallucinates non-exist features on the nose and eye regions, while SIN-4c-PRN produces results close to the ground
truth.

Model PSNR (σ) SSIM (σ)
SIN-PRN 34.61 (2.14) 0.873 (0.035)
SIN-4x-PRN 34.62 (1.97) 0.874 (0.029)
SIN-4c-PRN 34.90 (2.15) 0.877 (0.029)

Table 1: Reconstruction performance comparison. SIN-4x-
PRN: Same model with SIN-4c-RPN, but duplicating input
reconstruction by four times. σ denotes standard deviation.

training procedure, thus all the differences are contributed
by the different perceptual losses.

In the main paper we compared the PSNR and SSIM
metrics of the FBP reconstructions of result sinograms.
Here, we further provide metrics measured directly on the
result sinograms in Tb. 2. We observe better metrics of
DP than VGG16, despite both of them have slightly lower

Model PSNR (σ) SSIM (σ)

S
Non-Perceptual 42.50 (2.54) 0.979 (0.005)
VGG16 [3] 39.70 (2.25) 0.984 (0.004)
Ours (DP) 41.23 (2.83) 0.988 (0.005)

R
Non-Perceptual 33.39 (2.09) 0.829 (0.037)
VGG16 [3] 33.51 (2.02) 0.852 (0.036)
Ours (DP) 34.19 (2.35) 0.859 (0.036)

Table 2: Different perceptual loss performance trained with
a single SIN. ‘S’ and ‘R’ denote Sinogram and Reconstruc-
tion domain, respectively. σ denotes standard deviation.

PSNR than without perceptual loss. This is consistent with
the observation in the original work by Johnson et al. [3],
because perceptual losses are optimized with a different cri-
terion, i.e., the l2-norm is minimal when one optimizes for
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the l2 loss.
Then we show the visual results of the sinograms and

their FBP reconstructions in Fig. 2. Specifically, we pro-
vide the sinogram residuals compared to the ground truth
for ease of comparison. From these residuals, we find that
VGG16 produce slightly more errors than the others in the
sinogram domain, i.e., the training domain, possibly be-
cause sinograms are drastically different from natural RGB
images where VGG16 was trained with. However, we also
observe that after the FBP reconstruction, VGG16 and DP
produce visually less noisy images than without perceptual
losses. The reconstruction domain metrics and residuals in-
dicate the same observation.
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35.89 0.889 36.22 0.917 37.08 0.922 PSNR SSIM

(a) Non-Perceptual (b) VGG16 [3] (c) Ours (DP)

Head

(d) Ground Truth

Figure 2: (Continued) Sinogram residuals and corresponding FBP reconstructions and residuals from a single SIN using no
perceptual loss, VGG16 perceptual loss or our discriminator perceptual loss. The residual (error) maps are displayed in the
same range, hence we omit the scale-bar for visualization reasons. Both the non-perceptual and our DP generated sinograms
have fewer errors than VGG16. However, the reconstructions of Non-perceptual sinograms are slightly noiser and have more
remaining streak artifacts than the others.
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Figure 3: Checkerboard artifacts in the generated sinograms of the state-of-the-art learning-based approach [1] and conse-
quent artifacts in their FBP reconstructions. Left: result sinograms and reconstructions. Checkerboard artifacts are especially
severe in the boundary of sinograms. Please zoom in the sinogram to see more closely; Right: Ground Truth sinograms and
reconstructions.
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