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Abstract

Computed tomography is widely used to examine in-
ternal structures in a non-destructive manner. To obtain
high-quality reconstructions, one typically has to acquire
a densely sampled trajectory to avoid angular undersam-
pling. However, many scenarios require a sparse-view
measurement leading to streak-artifacts if unaccounted for.
Current methods do not make full use of the domain-specific
information, and hence fail to provide reliable reconstruc-
tions for highly undersampled data.

We present a novel framework for sparse-view tomogra-
phy by decoupling the reconstruction into two steps: First,
we overcome its ill-posedness using a super-resolution net-
work, SIN, trained on the sparse projections. The interme-
diate result allows for a closed-form tomographic recon-
struction with preserved details and highly reduced streak-
artifacts. Second, a refinement network, PRN, trained on
the reconstructions reduces any remaining artifacts.

We further propose a light-weight variant of the
perceptual-loss that enhances domain-specific information,
boosting restoration accuracy. Our experiments demon-
strate an improvement over current solutions by 4 dB.

1. Introduction
Since invented in 1972, Computed Tomography (CT)

has quickly been recognized as an essential non-destructive
modality for industrial inspection [7], medical diagno-
sis [30] or material sciences [43]. CT is a textbook example
of computational imaging, where a physical quantity is en-
coded in the measured data by an image formation model
and then reconstructed by inverting this forward model. In
the case of X-ray CT, an image of the attenuation coeffi-
cient is reconstructed from projections acquired in a circu-
lar acquisition. Under orthographic projection, this model

*The first two authors have equal contribution.
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Figure 1: Proposed two-step strategy for the sparse-view
CT problem, where projections are not enough to recover
a high-quality reconstruction. To obtain a reliable recon-
struction from sparse projections, a Sinogram Inpainting
Network (SIN) first super-resolves the projection image in
one dimension. This allows a direct reconstruction via FBP.
Then the Postprocessing Refining Network (PRN) removes
remaining artifacts.

becomes the Radon transform. Discretized measurements
of the Radon transform are called sinograms and their in-
version is well-studied. The most prominent approach is a
direct inversion with a closed-form solution called Filtered
Back-Projection (FBP) [30].

Accurate reconstruction with FBP requires sufficient an-
gular sampling in terms of the Crowther-criterion [6] de-
rived from the Shannon-Nyquist sampling theorem. If vio-
lated, aliasing artifacts appear as streak-artifacts that dras-
tically reduce diagnostic quality. This setting is called
Sparse-View CT (SV-CT) and arises in many practical ap-
plications, addressing motion compensation [9] or dose-
reduction [10, 48].

A number of approaches have been proposed to over-
come the ill-posedness of SV-CT by incorporating prior
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Figure 2: Different problems arising in tomographic imag-
ing and their relations to our 1D-super-resolution task, such
as metal artifact removal (MAR) and limited angle tomog-
raphy (LAT). SV-CT is at the intersection of inpainting and
super-resolution when viewed in measurement domain.

knowledge into the reconstruction algorithm. Traditionally,
Iterative Reconstruction (IR) is used to optimize a data-
fidelity term coupled with appropriate priors [24, 41, 54].
For example, the popular total variation (TV) prior assumes
piece-wise constant objects for CT [38]. Recently, learning-
based reconstruction algorithms have attracted a lot of at-
tention [1]. Prominent examples are convolutional neural
network (CNN)-based models designed to remove artifacts
in reconstruction domain [22] or unrolled networks mim-
icking the data-fidelity driven IR [33].

A less common approach is to interpret SV-CT as a
super-resolution or inpainting problem, where the missing
information is interpolated between the sparse projections.
A sparse-view sinogram can be either inpainted or 1D-
super-resolved. Either way, 1D-upsampling of a sinogram
is more constrained than its 2D-counterpart [19] of natural
images, since the sinogram data vary smoothly along the an-
gular dimension [15]. Other typical tomographic problems
with similar formulations include metal artifact removal and
limited angle tomography, see Fig. 2.

Sinogram inpainting did not attract much attention com-
pared to iterative approaches. This is because capturing
the intricate representations of sinograms turns out to be
an extremely challenging task [23, 27, 40]. However, the
fast development of deep learning now enables us to effi-
ciently capture low-dimensional representations of data in
various image domains. These technological advances mo-
tivate us to consider the possibilities of tackling SV-CT with
learning-based super-resolution.

In particular, we argue and will demonstrate that image-
processing in the measurement domain is favored over post-
reconstruction processing. This is because sinogram-based
methods prevent the generation of streak artifacts that are
difficult to remove using local processing (e.g., CNNs) be-

cause they are widely distributed over the image domain.
In this work, we propose a two-step architecture that

learns super-resolution in the sinogram domain and then re-
moves the remaining artifacts in the image domain. The
core idea is outlined in Fig. 1. The following summarizes
our main contributions:

• A novel 2-step reconstruction approach in both mea-
surement and image domain. It ensures maximum
detail-preservation compared to single-step networks.

• A novel domain-specific, light-weight perceptual loss
that outperforms the VGG-based perceptual loss [18]
in terms of accuracy, memory and time efficiency.

• Loss functions and submodules tailored to sinogram-
domain tasks, and an extensive ablation study that an-
alyzes the effectiveness of each proposed module.

• Demonstration of accurate reconstructions for high
compression ratios while achieving a significant per-
formance gain (over 4 dB PSNR) compared to state-
of-the-art algorithms.

2. Related Work

Learned Image Reconstruction Recent advances in the
reconstruction community seek to learn better image pri-
ors from available data [33]. Two prominent strategies
stand out: Postprocessing networks (PN) and Operator-
based learning (OBL).

A single-step PN removes aliasing artifacts after a direct
inversion with closed-form solutions such as FBP. Variants
of different neural networks are proposed to learn PN mod-
els to eliminate streak artifacts, such as GoogLeNet [45],
DenseNet [50] or TomoGAN [29]. An improved version
was presented by Han and Ye [14], showing that networks
fulfilling the frame-condition yield improved outcomes. A
downside of these PN-based methods is their inability to
constrain their output by relating it to the measured data.

With OBL a differentiable forward model is included
into the network. Most OBL frameworks unroll IR, such as
gradient descent, and learn the gradient of an image prior
that is applied during each iteration. For SV-CT, Chen
et al. [4] demonstrated state-of-the-art performance with
OBL. A more general approach to learning a data-driven
inversion of linear inverse problems are Neumann networks
introduced by Gilton et al. [12].

An entirely different approach from iterative reconstruc-
tion with learned priors is to reuse an arbitrary denois-
ing method for images as a proximal operator. This ap-
proach was pioneered by Venkatakrishnan et al. [42], re-
ferred to Plug-and-Play (P&P)-priors and can be combined
with learned denoising.
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Figure 3: Network Architecture of our proposed SIN-4c-PRN model. Top: In step one, we linearly upsample a sparse-view
sinogram and preprocess with our Two-Ends (TE) flipping method as input to the SIN model. In step two, the super-resolved
sinogram is 1D-downsampled by different factors. FBP reconstructions from the set of sinograms are concatenated as a
cascaded input to the PRN. The patch discriminators SIN-D and PRN-D calculate pixel-wise adversarial losses of global
or local generated images. Additionally, each discriminator calculates a discriminator perceptual loss that enhances the
generator’s perceptual knowledge. Bottom: Detailed architecture of our SIN and PRN models.

Image Super-Resolution & Inpainting A different ap-
proach to solve SV-CT poses it as a super-resolution or
inpainting problem in the measurement domain. This is
advantageous because sinograms do not yet suffer from
aliasing artifacts. U-Nets [37] and generative adversar-
ial networks (GAN) [13] have demonstrated strong perfor-
mance in this task by either considering the whole sino-
gram [8, 11, 39, 46] or local patches [25].

Recent approaches in other tomographic applications
(Fig. 2) combine learning in both sinogram and image do-
main to leverage the advantages of both representations.
For example, Zhao et al. [52] proposed an unsupervised
sinogram inpainting network trained in both domains in a
cycle for limited angle tomography. One of the first to
propose adding a Radon inversion layer to directly couple
measurement and reconstruction domain was Wúrfl et al.
[44]. The idea of dual-domain training was borrowed by
DuDoNet [28] to first inpaint missing information due to
metal-artifacts, see Fig. 2 and refine the subsequent recon-
struction.

Perceptual Losses GAN loss functions are often paired
with a perceptual loss to produce visually convincing im-
ages. Perceptual loss was introduced in the seminal work
by Johnson et al. [18] to tackle the long-standing prob-
lem that pixel-based loss-functions, such as the one using
the l2-norm, struggling to capture higher-level feature in-
formation. Perceptual losses are increasingly incorporated

in many imaging algorithms showing superior performance
while maintaining a reasonable convergence speed [49].
Yet, there is an ongoing debate about whether the natural
color image features apply to images with a drastically dif-
ferent formation model and diverse content. In the med-
ical imaging setting, domain-specific perceptual networks
were proposed to account for the domain change [26, 34].
These methods require pre-training of an additional net-
work which increases the complexity of the complete train-
ing pipeline, making it harder to reproduce results.

3. Proposed Approach

We propose a two-step framework with novel loss-
functions tailored for SV-CT, shown in Fig. 3. First, we
augment a sparse-view sinogram by 1D linear-interpolation
and Two-Ends preprocessing, which accounts for boundary
artifacts. The Sinogram Inpainting Network (SIN) gener-
ates a reliable super-resolved sinogram so that the object
can be reconstructed without strong streak artifacts via FBP.
While SIN successfully restores a full-view sinogram, small
imperfections still lead to some less-severe, more localized
artifacts. In the final refinement step, our Postprocessing
Refining Network (PRN) removes such artifacts to obtain a
high-quality reconstruction.

This section discusses the network architectures, intro-
duces our novel discriminator-perceptual loss, and outlines
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Figure 4: We avoid boundary artifacts during convolutions
by reusing projections on both ends of the sinogram.

the optimization procedure.

3.1. Two-Ends Sinogram Flipping

Boundary pixels have only one-sided neighborhood in-
formation. This quickly results in border blurriness detri-
mental for reconstruction. We present a simple two-ends
method that appends angles at the two ends of sparse-view
sinograms as outlined in Fig. 4.

Note that we only leverage data already present in the
measurements. This is because under orthographic projec-
tion, the total intensity detected from angle θ is a flipped
version of the projection at angle θ + π. This allows us to
repeat the first and last few angles of a sinogram by flip-
ping them along the detector axis and appending them to
the other end.

3.2. Network Architectures

Following previous works in learned CT-reconstruction,
we use the GAN [13] framework in both steps. We first
describe our adapted U-Net generators and global and local
patch discriminators [16, 17] in detail. Then we introduce
our SIN-4c-PRN architecture based on SIN and PRN.

Adapted U-Net Generators A U-Net is a CNN that in-
cludes an encoding-decoding process with skip connec-
tions [37]. We made the following adaptions to the U-Net
modules in our framework: Four average-pooling and
bilinear-upsampling layers, each followed by several deep
convolutional layers. We keep skip-connections at each res-
olution level to ensure low-level feature consistency.

We find that resizing operations such as pooling and bi-
linear layers restore smooth sinusoids essential for tomo-
graphic reconstruction. In contrast, half-strided convolu-
tions introduce severe checkerboard artifacts [32] as in our
experiments.

We further replace max-pooling with average-pooling,
since a differentiable operator is preferable over subdiffer-
entials for restoration tasks [47, 53]. The preservation of
gradients maximally recovers measurement-domain infor-
mation. Otherwise, if the high-frequencies produced by

Discriminator Perceptual Loss 

Generator

Discriminator

1. A little noisier results. 
1. No need for external weights;
2. Model improves with D but still takes same training time as VGG16;
3. Less burden for memory;
4. Domain specific;
5. Converge fast;
6. As a way to strengthen G when D is too strong to train stably.

Discriminator 
Perceptual Loss
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#" 𝑙!"
##

𝑥 #𝑦

𝑦

Figure 5: Discriminator Perceptual Loss. The image pair ŷ
generated from the input x, and the target image y are com-
pared at each activation layer output φj in the discriminator.
Pixel-wise losses are calculated for updating the generator.

max-pooling are misaligned, errors will be amplified by the
following FBP operation.

Patch Discriminators Inspired by Isola et al. [17], our
discriminators include four convolution layers that down-
scale the input by a factor of four and output image
patches. Pixel-wise probabilities of these patches being real
or fake are then calculated as adversarial losses described
in Sec. 3.4. We also keep the discriminators in relatively
low dimensional feature space (≤ 256 kernels) for ease of
training without compromising performance [2].

Sinogram Inpainting Network (SIN) The proposed SIN
fills in the missing projections by directly learning from
sparse-view to full-view sinograms. The adapted U-Net
generates super-resolved sinograms from an initial linear
estimation, trained simultaneously with two patch discrim-
inators that focus on either global or local descriptions of
the generated sinograms. Specifically, the local discrimi-
nator randomly picks 1/4 × 1/4 local patches from super-
resolved sinograms to enhance local sinusoidal details.

Postprocessing Refinement Network (PRN) PRN is con-
nected to SIN by the FBP operator, and it includes a U-Net
and a patch discriminator.

One major consideration in designing a second-step net-
work is to prevent propagation of errors introduced by our
SIN. To solve this, we introduce a set of reconstructions
from multi-resolution sinograms for our PRN to learn from.
We observe that SV-CT reconstructions already show sharp
partial information although severely obscured by aliasing
artifacts. Effective use of such information can be achieved
by constructing a pool of diverse features for the network to
learn from.

In particular, we downsample the SIN-inpainted sino-
grams along the angular axis by factors of 2 and 4.
Then four different FBP reconstructions from sparse,
2×downsampled, 4×downsampled, and fully-inpainted
sinograms are concatenated as a 4-channel input to the
PRN.
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3.3. Discriminator Perceptual Network

Perceptual losses have proven to significantly enhance
the ability of networks to generate images with high percep-
tual quality [49] when compared to traditional pixel-wise
losses. The original perceptual loss computes the l2 norm of
generated and target image pairs through a pre-trained Vi-
sual Geometry Group (VGG) network [18], which serves as
a feature extractor that enforces high-level feature fidelity.

We propose a novel Discriminator Perceptual (DP) loss
that is easy to incorporate into the formulation and espe-
cially suitable for domain-specific tasks. It interprets the
first few layers of a discriminator as a feature extractor,
which is trained simultaneously with the generator on the
current problem, and encourages feature-level similarity,
see Fig. 5. The DP-loss is computed in a similar fashion
as the original perceptual-loss with VGG.

We find out that introducing the DP-loss promotes sta-
bility in our GAN training procedure. For example, we can
train the discriminator until convergence at each iteration
of the minimax game. An incremental strategy for training
GANs with DP-loss is provided in the supplementary mate-
rial for further reference.

DP loss is calculated by the l2 norms of the error between
outputs of each activation layer φj in the discriminator with
respect to the input pair consisting of the generated image
ŷ and the target image y. While one can choose any such
layer j in a discriminator, we compute the averaged norm
for each φj before the last one (i.e., we do not include the
discriminator output layer):

LDP (ŷ, y) =
1

N

N∑

j=1

1

CjHjWj
‖φj(ŷ)− φj(y)‖22 (1)

where Cj is the number of channels, Hj , Wj are height and
width of the output at φj , respectively, and N is the number
of activation layers we use.

3.4. Optimization

Adversarial loss In the GAN-framework [13], the gener-
ator is augmented by a discriminator that discerns real and
synthesized images. During training, the generator and the
discriminator compete in a min-max game that leads to the
adversarial loss.

Given a corrupted image x and a target image y, we for-
mulate the optimization target as follows:

min
G

max
D

V (G,D) =Ey∼target[logD(y)]+

Ex∼corrupt[log(1−D(G(x))],
(2)

where G and D represent the generator and discriminator
networks, respectively.

Specifically, in SIN, the input x ∈ RS×P is the pre-
processed sparse-view sinogram to S detector pixels and

Ramp Filter

FT

…

…

IFT

Figure 6: Applying Ramp filter to a sinogram preserves
high frequency features. The filter is applied along one
dimension in the frequency or spatial domains. Since the
Ramp operator is back-propagatable [36], losses can be de-
fined on the ramp-filtered signal.

P angles and target y ∈ RS×P ′ is a preprocessed full-
view sinogram. Local discriminators compare G(x)patch
and ypatch ∈ RbS/4c×bP ′/4c, which are small patches from
the sinogram randomly chosen from G(x) and y, respec-
tively. In PRN, x and y ∈ RS×S form the input and target
reconstructions pair.

Content Loss Besides the adversarial loss, we ensure the
data fidelity of the generated images by applying an l1-norm
based pixel-reconstruction loss:

Lc(ŷ, y) = ‖ŷ − y‖1, (3)

where ŷ is the generated and y the target image. The con-
tent loss is calculated in both SIN and PRN. As suggested
in [51], we choose the l1 loss since our experiments showed
slightly sharper reconstructions compared to the l2 loss.

High-Frequency (HF) Loss Neural networks tend to pri-
oritize learning of low-frequency features during train-
ing [35]. While it might be acceptable for PRN since tomo-
graphic reconstructions tend to be relatively smooth, it is of
critical importance for SIN where high-frequency informa-
tion is essential for correct reconstructions. This is because
FBP requires ramp filtering [30] which is a high-pass fil-
ter compensating for oversampling the low-frequencies, as
illustrated in Fig. 6.

To incorporate this CT-domain knowledge, we enforce
our SIN to restore an accurate ramp-filtered sinogram by
defining a high-frequency loss:

LHF (ŷ, y) = ‖ŷ ∗ h− y ∗ h‖1, (4)

where h is the ramp kernel in the spatial domain, and ∗ de-
notes convolution. Note that the high-frequency loss is fully
backpropagatable [36].

Total Objective Finally, the total objective function of the
SIN generator is the weighted sum of the four losses men-
tioned above:

5



GSIN* = argmin
G

[λ1Ladv(G)+λ2Lc+λ3LDP+λ4LHF ],

(5)
where Ladv defines the adversarial loss [13] (details in
the supplementary material) and λi are empirically chosen
weighting parameters. Based on our experiments, we set
λ1 = 1, λ2 = 50, λ3 = 20, λ4 = 50. All discriminator
adversarial losses are assumed a weight equal to one.

Similarly, the total objective function for the PRN is:

GPRN* = argmin
G

[λ1Ladv(G) + λ2Lc + λ3LDP ],

(6)
where all parameters λi are chosen the same as for SIN.

4. Experiments
Our experiments are performed on the open-source

TCIA LDCT-and-Projection-Dataset [5, 31]. We exten-
sively evaluate our methodology both qualitatively using
samples of chest, abdomen, and head images and quantita-
tively using the Structural Similarity Index Measure (SSIM)
and Peak Signal-to-Noise Ratio (PSNR).

We define a full-view target sinogram y∗ ∈ RS×P∗ to
have S = 320 detector pixels and P ∗ = 180 uniformly-
distributed angles over π. The sparse-view input includes
23 angles sampled from y∗ once every eight projections,
and the reconstructed image have a resolution of 320× 320
pixels. Due to the proposed two-ends preprocessing, we
take six angles from each end of y∗ to generate a 192-angle
sinogram y ∈ RS×(P∗+12) as the ground-truth for SIN.

4.1. Datasets

Our dataset contains 5394 images resized to 320 × 320
stemming from 68 patients taken from the TCIA dataset.
Additionally, we augment each sample with a random affine
transform to increase data diversity during training. Note
that this transformation is performed on the reconstructions,
which leads to significant variation in the sinogram do-
main. We then extract a set of around 500 images from
the dataset patient-wise for testing. Once we choose a pa-
tient for testing, we remove all data related to this patient
from the training set to avoid inter-slice correlation. Full-
view sinograms are generated using parallel-beam (ortho-
graphic) projections over an angular range of 180 degree,
which define the target set for SIN.

4.2. Training Details

Following the standard GAN procedure [13,16], the gen-
erator and both global and local discriminators are trained
alternatively. The ADAM [21] solver with momentum pa-
rameters β1 = 0.5 and β2 = 0.999 are used to optimize all
networks. We set the learning rate to 0.0001 and run 100
epochs or until convergence for all experiments. For further

33.56
0.917

(a) Linear

40.22
0.978

(b) SIN

PSNR
SSIM

(c) Ground Truth

31.96 0.828

(d) SIN

33.15 0.859

(e) SIN-4c-PRN

PSNR SSIM

(f) Ground Truth

Figure 7: Our results in both measurement and reconstruc-
tion domains with zoom-in details compared to linear inter-
polation.

details on the training procedure, please consult the supple-
mentary material.

4.3. Qualitative Results

We first show our results in both measurement and re-
construction domains in Fig. 7. Compared with a naive lin-
ear interpolation, our super-resolved sinograms accurately
restore the smooth sinusoidal structures. It is nearly im-
possible to discern difference between SIN-generated and
ground-truth sinograms. A subsequent reconstruction in
Fig. 7d obtained by FBP shows an artifact-reduced recon-
struction that resembles the target image. However, there
remains a novel type of less severe artifacts. These localized
artifacts can be efficiently removed by PRN in the second
step. The final result of our SIN-4c-PRN preserves details
such as bones and soft-tissue contrast.

Comparison to State-of-the-Art In Fig. 8, we further
compare our SIN-4c-PRN model to state-of-the-art CT re-
construction approaches.

FISTA-TV [3] is a powerful iterative reconstruction al-
gorithm that employs TV-based regularization. We use the
implementation in the open-source toolkit ToMoBAR [20].
To select the optimal hyperparameters of FISTA-TV, we
perform a grid-search and choose the set with the best visual
results. FISTA-TV preserves edges well, but the reconstruc-
tions are over-smoothed, which is a well-known weakness
of the TV-prior.

We further compare with a learning-based sinogram
inpainting network that uses a conditional-GAN (cGAN)

6



21.52 0.438 29.90 0.805 28.87 0.731 27.35 0.619 32.76 0.861 PSNR SSIM

24.14 0.522 30.94 0.847 32.16 0.796 29.68 0.788 36.29 0.913 PSNR SSIM

23.05 0.490

(a) Sparse-View

32.10 0.867

(b) FISTA-TV [3]

30.19 0.778

(c) cGAN [11]

27.76 0.650

(d) Neumann [12]

34.31 0.915

(e) SIN-4c-PRN

PSNR SSIM

(f) Ground Truth

Figure 8: Baseline results with zoom-in details. From top to bottom row: Chest: In our SIN-4c-PRN result, both soft tissues
in the black region of the body and sharp edges of bones are maximally recovered compared to other methods. Abdomen:
Soft tissues with low contrast, such as in the green box are hard to recover from sinograms and pose a significant challenge
for our networks. Head: The high-frequency details in the nose and bone regions are reconstructed while others either fail
or over-smooth them.

based on an Encoding-Decoding U-Net [11] with strided-
convolutions. We implement their architecture and tuned
hyper-parameters to obtain the best results. Our experi-
ments show that checkerboard artifacts still exist in gener-
ated sinograms due to the strided convolutions, see supple-
mentary material for example images. And these artifacts
are further amplified in reconstructions. Note that the orig-
inal work uses much lower undersampling factors than we
are aiming for in this paper, which might explain the dis-
crepancy to their findings.

Finally, we compare against our own PyTorch imple-
mentation of Neumann networks [12]. Neumann networks
are a variant of unrolled optimization that learns a CNN-
based regularizer. They have proven to yield great results in
solving super-resolution and MRI problems. Note that un-
rolling networks require a back-propagatable tomography
operator, for which we use torch-radon [36]. Despite exten-

sive tuning of hyper-parameters, our implementation fails
to remove streak artifacts and over-smoothness.

4.4. Quantitative Results

For a quantitative evaluation we measure the PSNR and
SSIM statistics within a circular region-of-interest using our
test dataset. Table 1 shows that our proposed SIN-4c-PRN
model significantly improves the reconstruction accuracy
compared to the other state-of-the-art reconstruction meth-
ods discussed earlier. In particular, our model improves the
average PSNR by over 4 dB and SSIM by 5%, with nar-
rowed variance.

5. Ablation Study

This paper proposes several submodules which provide
the best results when all used in conjunction. Yet, the com-
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Method PSNR (σ) SSIM (σ)
FISTA-PD-TV [3] 30.61 (2.67) 0.839 (0.036)
cGAN [11] 30.86 (1.92) 0.762 (0.043)
Neumann Network [12] 28.72 (2.09) 0.697 (0.069)
Ours 34.90 (2.15) 0.877 (0.029)

Table 1: Performance of baseline models compared with
our SIN-4c-PRN model.

Model PSNR (σ) SSIM (σ)
Sparse-View 22.80 (1.77) 0.485 (0.042)
PRN 32.95 (1.96) 0.835 (0.034)
SIN 34.19 (2.35) 0.859 (0.036)
SIN-PRN 34.61 (2.14) 0.873 (0.035)
SIN-4c-PRN 34.90 (2.15) 0.877 (0.029)

Table 2: Reconstruction performance with different compo-
sition of our models.

plete framework reaches a certain complexity and raises the
question of whether all sub-modules actually improve per-
formance. For this reason, we carry out an extensive abla-
tion study to analyze the impact of each module. All of the
experiments follow the training strategy in Sec. 4.2, and are
evaluated in the reconstruction domain.

Analysis among Models First, we compare the results of
different architectures. We raise the following questions
about the necessity of our two-step networks: How good are
the reconstructions if one only trains SIN, PRN (i.e., with
a sparse-view reconstruction as input) or a SIN-PRN with-
out the cascaded 4-channel input? To validate, we train the
four networks and summarize the quantitative results in Ta-
ble 2. We first show an improvement in both metrics of SIN
compared to PRN, which is consistent with our arguments
that measurement domain is easier to learn and preserves
information. With both, SIN-PRN provides cleaner recon-
structions. The experiments further suggest that including
the cascaded input improves both metrics and image qual-
ity. We verify that the improvement of SIN-4c-PRN indeed
comes from the diversity of inputs, by training another net-
work with the same capacity but only single form of input.
For more training details and qualitative results, we refer to
supplementary material.

Analysis of Proposed Modules We perform controlled
experiments to analyze the effectiveness of our two-ends
(TE) preprocessing and high-frequency (HF) loss with a
SIN model. Table 3 shows that with either module, PSNR
improves by 2.5 dB and SSIM by 5%.

Analysis of Discriminator Perceptual Loss We further
compare our DP loss with VGG16 perceptual loss [18] by
simply substituting the perceptual loss modules in our SIN.

Module Perceptual Metrics
TE HF DP VGG PSNR (σ) SSIM (σ)
7 7 4 7 30.84 (1.87) 0.785 (0.046)
7 4 4 7 31.65 (2.15) 0.812 (0.050)
4 7 4 7 31.71 (2.14) 0.808 (0.049)
4 4 7 7 33.39 (2.09) 0.829 (0.037)
4 4 7 4 33.51 (2.02) 0.852 (0.036)
4 4 4 7 34.19 (2.35) 0.859 (0.036)

Table 3: Reconstruction performance of different sub-
modules and perceptual losses trained on single SIN model.

Table 3 includes comparison among non-perceptual loss,
VGG16 and DP loss on sinogram data. Our DP network
shows the best results on both metrics. Qualitative results
and sinogram domain metrics in the supplementary material
show that the inpainted sinograms with DP are considerably
better than with VGG16 and lose fewer details, especially
in low-contrast regions.

6. Conclusion

In this paper, we propose a two-step reconstruction
framework for sparse-view CT problems. Our SR-network
successfully learns the challenging task of upsampling a
thin sinogram. The subsequent refinement network robustly
removes the remaining artifacts. The full network outper-
forms state-of-the-art reconstruction algorithms. One of our
core contributions is the discriminator perceptual network
that enforces the network to incorporate high-level domain-
specific knowledge. We further introduce task-specific sub-
modules tailored to the sparse-view tomography problems
such as two-ends processing and the high-frequency loss.
Moreover, to test each module for effectiveness, we perform
a comprehensive ablation study.

The two-step procedure showcases how to bring explain-
ability to image reconstruction problems by tailoring the so-
lution to the idiosyncrasies of the imaging environment. We
strongly believe that our approach is not limited to CT, and
we hope to inspire other imaging applications with similar
ideas for pushing the limits of imaging.
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