Polychromatic Reconstruction for Talbot-Lau X-ray Tomography

Florian Schiffers 13 June 2017

FRIEDRICH

Outline

- Motivation
- **Tomography**
- State of the art
- Contributions
- Results
- Outlook

Beer-Lambert Law

$$
\begin{array}{c}\nI_0 \\
\hline\n\end{array}
$$
\nSource
Dette
Source

$$
I = I_0 e^{-\int \mu(\vec{r}) d\vec{r}}
$$

ector

ERLANGEN CENTRE
FOR ASTROPARTICL

Attenuation

Differential Phase

Dark-field

Attenuation

Sinogram

Differential Phase

 δ

Attenuation Scatter

7

Volume Viewer

Volume Viewer

Iterative Reconstruction In Computed Tomography

Phase Step 1

Phase Step 2

Phase

Step 4

ERLANGEN CENTRE
FOR ASTROPARTICL

State of the art

- Andre Ritter et al. (2013, ECAP)
- Bernhard Brendel et al. (2016, Philips)
- Andre Ritter et al. (2016, ECAP)
- Andreas Wolf (2016, ECAP)

Ritter et al. (2013)

Image resolution: 90×90 Simulated data (CXI)

Brendel et al. (2016)

20

Synchrotron data Reconstruction with interlaced acquisition Regularization term added

Andreas Wolf (ECAP, Master thesis)

(a) AMP μ - FBP.

(e) Phase δ - FBP.

(i) Scatter σ - FBP.

(b) AMP μ - Siddon.

(f) Phase δ - Siddon.

(j) Scatter σ - Siddon.

(c) AMP μ - Distance.

(g) Phase δ - Distance.

(k) Scatter σ - Distance.

(d) AMP μ - Blob.

(h) Phase δ - Blob.

(1) Scatter σ - Blob.

Image resolution: 60×60

Ritter et al. (2016) μ δ σ

Image resolution: 51 ×51 Real data of biological sample with conventional X-ray tube

Reconstruction Framework of this thesis

Image resolution: 512×512

Contributions

- Development of reconstruction framework
	- Polychromatic artifacts
	- Enhanced optimization algorithm
- Development of (pre-)processing methods
- Numerical analysis of the reconstruction algorithm
- Planning and execution of tomographic measurements to evaluate the proposed algorithms

Energy dependence of

Material $\mu(E), \delta(E), \sigma(E)$

Interferometer $N_0(E)$, $\phi_0(E)$, $V_0(E)$

Dispersion

Energy dependence of

Material $\mu(E), \delta(E), \sigma(E)$

Interferometer $N_0(E)$, $\phi_0(E)$, $V_0(E)$

Dark-field due to beam hardening

 $\overline{V} = \frac{\int N(E) \cdot V(E) dE}{\int N(E) dE}$ $\overline{N} = \int N(E) dE$

How to deal with beam hardening?

From monochromatic to polychromatic

Polychromatic Forward Model

$$
N_S = \int dE \, N_0(E) T(E) \, \cdot
$$

 $1 + D(E)V_0(E) \cos[\Delta\phi(E) + \phi_0(E) + \phi_s]$

Polychromatic Forward Model

$$
\mu(E) = \mu(E_0) \cdot \left(\frac{E}{E_0}\right)^{C_\mu = -3}
$$

$$
\delta(E) = \delta(E_0) \cdot \left(\frac{E}{E_0}\right)^{C_{\delta}=-2}
$$

$$
\sigma(E) = \sigma(E_0) \cdot \left(\frac{E}{E_0}\right)^{C_{\sigma} = -2}
$$

Results

Simulation data

Real data

Specimen

Aluminum tube at 60 kVp

Model vs. Reality

Why the discrepancy?

Compton scatter?

$$
V = \frac{A_0 \cdot e^{-\mu \cdot d} \cdot e^{-\sigma \cdot d}}{N_0 \cdot e^{-\mu \cdot d}} = V_0 \cdot e^{-\mu \cdot d}
$$

$$
V' = \frac{A_0 \cdot e^{-\mu \cdot d} \cdot e^{-\sigma \cdot d}}{N_0 \cdot e^{-\mu \cdot d} + N_{Compton}}
$$

Syringe filled with Iodine (60 kVp)

Conclusion

- Development of reconstruction framework
	- Large reconstruction resolution possible
- Development of a polychromatic forward model
	- Can reconstruct synthetic phantom data
	- Discrepancy between real and expected data

Outlook

- More evaluation on **real data**
- Adaption of the forward model

Thank you

Comparison of real and simulated data (radiographic)

$\overline{0}$

(a) Measured data

 $\overline{0}$

(c) Polychromatic model

(e) Polychromatic model

(f) Cross-section

How to calculate the line integrals?

Summation over coefficients

Line integral as weighted summation

$p = \sqrt{2} \cdot 2 + \sqrt{2} \cdot 3 + \sqrt{2} \cdot 3$

Line integral as weighted summation

Line integrals as area weighted summation

 $= a_1 x_1 + a_2 x_2 + a_3 x_3 + a_4 x_4$

 $+a_5x_5 + a_6x_6 + a_8x_8 + a_9x_9$

Non-rectangular representation of basis function

Non-rectangular basis function

(a) Kaiser-Bessel function and the (differential) footprint

(b) Smooth image function

Discretization

(a) Voxel discretization (32 x 32 pixel).

(b) Blob discretization (32 x 32 pixel).

Number of matrix elements

$$
N_{Total} = N_{Grid}^2 \cdot N_{pixel} \cdot N_{Proj}
$$

$$
N_{Total} = 512^2 \cdot 1000 \cdot 720
$$

$$
= 1.8 \cdot 10^{11}
$$

64

Memory efficient implementation

Outlook

• Evaluation on **real data**

66

ERLANGEN CENTRE
FOR ASTROPARTICI

Calculating three kinds of image information

Full Setup Information

Radon transform

Sinogram

