## Polychromatic Reconstruction for Talbot-Lau X-ray Tomography



#### EKLANGEN CENTKE FOR ASTROPARTICLE PHYSICS

Florian Schiffers 13 June 2017





## Outline

- Motivation
- Tomography
- State of the art
- Contributions
- Results
- Outlook



## **Beer-Lambert Law**

$$\mu(\vec{r})$$

$$I_0$$

$$I = I_0 e^{-\int \mu(\vec{r}) d\vec{r}}$$



# ector





ERLANGEN CENTRE FOR ASTROPARTICL PHYSICS



### **Attenuation**



### **Differential Phase**



## **Dark-field**





## Attenuation

## Sinogram

μ











δ











ERLANGEN CENTRE FOR ASTROPARTICLE PHYSICS





# Attenuation

# **Scatter**





Volume Viewer

Volume Viewer



# Iterative Reconstruction In Computed Tomography































Phase Step 1

*Phase* Step 2

Phase

Step 3

Phase

Step 4























# State of the art

- Andre Ritter et al. (2013, ECAP)
- Bernhard Brendel et al. (2016, Philips)
- Andre Ritter et al. (2016, ECAP)
- Andreas Wolf (2016, ECAP)



#### Ritter et al. (2013)









## Image resolution: $90 \times 90$ Simulated data (CXI)



#### Brendel et al. (2016)

 $\mu$ 











20

## Synchrotron data Reconstruction with interlaced acquisition Regularization term added



#### Andreas Wolf (ECAP, Master thesis)



(a) AMP  $\mu$  - FBP.



(e) Phase  $\delta$  - FBP.



(i) Scatter  $\sigma$  - FBP.



(b) AMP  $\mu$  - Siddon.



(f) Phase  $\delta$  - Siddon.



(j) Scatter  $\sigma$  - Siddon.



(c) AMP  $\mu$  - Distance.



(g) Phase  $\delta$  - Distance.



(k) Scatter  $\sigma$  - Distance.



(d) AMP  $\mu$  - Blob.



(h) Phase  $\delta$  - Blob.



(1) Scatter  $\sigma$  - Blob.

Image resolution:  $60 \times 60$ 



#### Ritter et al. (2016) *µ*









## Image resolution: 51 ×51 Real data of biological sample with conventional X-ray tube



#### **Reconstruction Framework of this thesis**

μ

 $\delta$ 

 $\sigma$ 



### Image resolution: $512 \times 512$





#### Contributions

- Development of reconstruction framework
  - Polychromatic artifacts
  - Enhanced optimization algorithm
- Development of (pre-)processing methods
- Numerical analysis of the reconstruction algorithm
- Planning and execution of tomographic measurements to evaluate the proposed algorithms





# **Energy dependence of**

# Material $\mu(E), \delta(E), \sigma(E)$

# Interferometer $N_0(E), \phi_0(E), V_0(E)$









#### Dispersion



# **Energy dependence of**

# Material $\mu(E), \delta(E), \sigma(E)$

# Interferometer $N_0(E), \phi_0(E), V_0(E)$



#### Dark-field due to beam hardening



 $\overline{N} = \int N(E)dE$   $\overline{V} = \frac{\int N(E) \cdot V(E) dE}{\int N(E) dE}$ 



# How to deal with beam hardening?





# From monochromatic to polychromatic



## **Polychromatic Forward Model**




$$N_s = \int dE \, N_0(E) T(E) \, \cdot$$

 $(1 + D(E)V_0(E) \cos[\Delta \phi(E) + \phi_0(E) + \phi_s])$ 



#### **Polychromatic Forward Model**

$$\mu(E) = \mu(E_0) \cdot \left(\frac{E}{E_0}\right)^{C_{\mu} = -3}$$

$$\delta(E) = \delta(E_0) \cdot \left(\frac{E}{E_0}\right)^{C_{\delta} = -2}$$

$$\sigma(E) = \sigma(E_0) \cdot \left(\frac{E}{E_0}\right)^{C_{\sigma} = -2}$$



## Results



## **Simulation data**













## **Real data**



#### Specimen



ERLANGEN CENTRE FOR ASTROPARTICLE PHYSICS

#### Aluminum tube at 60 kVp







#### **Model vs. Reality**





Why the discrepancy?

Compton scatter?

$$V = \frac{A_0 \cdot e^{-\mu \cdot d} \cdot e^{-\sigma \cdot d}}{N_0 \cdot e^{-\mu \cdot d}} = V_0 \cdot e^{-\mu \cdot d}$$
$$V' = \frac{A_0 \cdot e^{-\mu \cdot d} \cdot e^{-\sigma \cdot d}}{N_0 \cdot e^{-\mu \cdot d} + N_{Compton}}$$







#### Syringe filled with Iodine (60 kVp)







## Conclusion

- Development of reconstruction framework
  - Large reconstruction resolution possible
- Development of a polychromatic forward model
  - Can reconstruct synthetic phantom data
  - Discrepancy between real and expected data



## Outlook

- More evaluation on real data
- Adaption of the forward model



## Thank you



## **Comparison of real and simulated data (radiographic)**







#### 

(a) Measured data



(c) Polychromatic model





(e) Polychromatic model







# How to calculate the line integrals?



#### **Summation over coefficients**







#### Line integral as weighted summation



#### $p = \sqrt{2} \cdot 2 + \sqrt{2} \cdot 3 + \sqrt{2} \cdot 3$



Line integral as weighted summation





#### Line integrals as area weighted summation



 $= a_1 x_1 + a_2 x_2 + a_3 x_3 + a_4 x_4$ 

 $+a_5x_5+a_6x_6+a_8x_8+a_9x_9$ 



#### Non-rectangular representation of basis function





#### **Non-rectangular basis function**



(a) Kaiser-Bessel function and the (differential) footprint

(b) Smooth image function



#### Discretization



(a) Voxel discretization (32 x 32 pixel).

(b) Blob discretization (32 x 32 pixel).



#### **Number of matrix elements**



$$N_{Total} = N_{Grid}^2 \cdot N_{Pixel} \cdot N_{Proj}$$
$$N_{Total} = 512^2 \cdot 1000 \cdot 720$$
$$= 1.8 \cdot 10^{11}$$



## Memory efficient implementation





## Outlook

• Evaluation on real data





σ

#### **Calculating three kinds of image information**







#### **Full Setup Information**





### **Radon transform**

Sinogram







