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Abstract

In recent years tomographic reconstruction methods for interferometric X-ray imaging have
drawn attention to the X-ray imaging community. An unresolved task remains in reconstruction
of the anisotropic part of X-ray dark-field signals. Many attempts have been made to tackle this
issue [1–4]. Among them X-ray Tensor Tomography (XTT) [3] recovers tensorial information by
fully sampling the 3-D imaging space.

In this work, we investigate the behavior of XTT. In particular, we examine the influence
of number of chosen scatter directions with respect to accuracy and convergence. Additionally,
we analyze the algorithm’s capability to reconstruct complex fiber structures with only two
tomographic trajectories. The experiments are performed on numerical phantom data.



ii



Contents

1 Introduction 3

2 Previous Work 5

3 Implemented Method 7
3.1 Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Gradient Descent with Zero-Constraint . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Extraction of Tensorial Information . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Methods 11
4.1 Number and Definition of Scatter Directions . . . . . . . . . . . . . . . . . . . . 11

4.2 Parallel Beam Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.3 Tensor Tomography with two Trajectories . . . . . . . . . . . . . . . . . . . . . 13

4.4 Visualization of Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.5 Phantom Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.6 Creation of Dark-Field Images . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Results 19
5.1 Reconstruction Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.2 Gradient Descent Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.3 Influence of Scatter Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6 Discussion and Outlook 25
6.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

List of Figures 27

iii



CONTENTS 1

Bibliography 28



2 CONTENTS



Chapter 1

Introduction

X-ray attenuation imaging has been one of the most important imaging techniques to observe
contrast images between highly and lowly absorbing structures. However, from a physical point
of view, the electro-magnetic wave character of X-rays is hereby not fully exploited. By using
new measurement approaches, in means of interferometric techniques known from the fields of
optics [5], more information can be gained.

Even though extensive research has been carried out on imaging the phase-shift experienced
by an X-ray when passing through a specimen [6–10], these techniques were limited to physic
laboratories due to the requirement of coherent X-ray illumination. A breakthrough was made
when Pfeiffer et al. [11] demonstrated a novel setup for X-ray grating interferometry [12, 13]
comprising an ordinary X-ray tube combined with special gratings.

With this interferometric setup three signal components are extracted, namely the already
known absorption and additionally the phase-contrast and the dark-field component. Examples of
each modality are given in figure 1.1.

Recently, efforts were made to find reasonable methods for a volumetric reconstruction of
the dark-field signal. A straight-forward approach to recover three-dimensional scalar data,
comparable to attenuation CT [14], is limited to isotropic scattering, since only a scalar value
related to a scattering strength is recovered [15]. Despite this drawback, it has shown to give
beneficial results for applications where the other two signals, attenuation and phase-contrast fail
to provide high contrast signals [15]. Thus one has powerful arguments to believe that tomographic
reconstruction of the anisotropic scattering components is able to provide additional insights,
helpful in medical diagnostics or material sciences [16].
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4 CHAPTER 1. INTRODUCTION

Figure 1.1: A tomato and a knee sample from (a) absorption image, (b) phase-contrast im-
age, (c) dark-field image. Image taken from http://bruker-microct.com/company/
research.htm (date: 04/15/2016)

http://bruker-microct.com/company/research.htm
http://bruker-microct.com/company/research.htm


Chapter 2

Previous Work

X-ray absorption tomography has been one of the most important diagnostic modalities over the
last decades. A lot of research has been conducted on optimizing and analyzing reconstruction
algorithms. The most popular method among them is the Filtered Back Projection (FBP) [14].

With the final breakthrough of interferometric X-ray imaging in 2006 it was not long until
the X-ray reconstruction community started to apply methods related to FBP for phase-contrast
tomography with remarkable results [17, 18]. Their basic idea is to build a physical model for
the differential phase-contrast signal inspired by the Beer-Lambert Law [19]. Under this premise
FBP can be applied almost directly to the phase-contrast images.

The first approaches applying computed tomography on the dark-field signal have been
published by Bech et al. [15]. Assuming the visibility signal to decay comparable to the Beer-
Lambert law, they introduce the material-dependent Linear Diffusion Coefficient (LDC). In a
straight-forward thinking they performed FBP-like reconstruction, which is naturally constrained
to isotropic dark-field scattering due to scalar representation of its signal.

Around the same time Jensen et al. [16] and later Revol et al. [20] demonstrated the directional
dependence of the X-ray dark-field signal. First efforts to consider this particular property of the
dark-field signal were made by Malecki et al. [3] and Bayer et al. [2].

Malecki was able to reconstruct three dimensional structural information out of a wooden
block sample with images coming from a full tomographic dataset. In earlier work he introduced
a physical model inspired by the well-known Beer-Lambert Law for X-ray attention imaging
comprising artificial scattering directions [21]. His work was carried on and led to a very recent
publication by Vogel et al. [4]. By constraining the reconstructed parameters they receive very
promising results on real objects like tree branches and teeth.

Whereas Malecki’s method does not differentiate between isotropic and anisotropic contri-
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6 CHAPTER 2. PREVIOUS WORK

butions, Bayer et al. [2] successfully reconstructed both, scalar and vectorial components using
data from only one tomographic scan. Since the proposed method reconstructs only the projected
angle from 3D local orientation onto the plane defined by the sensor’s trajectory, the vectorial
component remains in a 2D plane. This drawback was overcome by Hu et al. [1] using a second
tomographic scan perpendicular to the first.

The latter method has shown that the specimen’s micro orientation can principally be recon-
structed by just two tomographic scans. This gives rise to the question if the method proposed by
Malecki is able to achieve similar results under equal conditions. This issue will be dealt with
among others in the following.



Chapter 3

Implemented Method

In preceding work [20, 22], a physical model of directional dark-field imaging was developed.
Similar to their predecessors, the model shows resemblance with the Beer-Lambert Law, yet
restricted to a two-dimensional reconstruction.

Malecki generalizes this idea by introducing a finite set of artificial scattering directions in his
model:

D(x, y) = exp

[
−
∫ ∑

i

〈ε̃i (s, x, y, z) , t〉2 dz

]
. (3.1)

Here, x, y and z are given by the specimen’s coordinate system. D stands for the measured
dark-field signal, 〈·, ·〉 is the inner product, s ∈ R3 is the incoming beam and t ∈ R3 is the
interferometer’s sensitivity vector. The dependence of the dark-field signal on the direction of the
incoming beam, is hereby modeled by the notional scatter directions ε̃i, which contributions are
subject to reconstruction.

Their absolute value describes the effective scattering strength of a voxel for each defined
scatter direction. One remarkable point is that the choice of number and orientation of the scatter
directions has been rather arbitrary and no research has been conducted on this question until now.
Furthermore, he proposed ellipsoid fitting onto reconstruction data providing tensorial information
on the local scattering.

In subsequent work followed by Vogel [4] a more elegant fitting algorithm based on Principal
Component Analysis (PCA) was introduced. Additionally, they presented a more generic algo-
rithm for reconstruction comprising two approaches to constrain the obtained scatter strengths by
enforcing them to form ellipsoidal shapes.
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8 CHAPTER 3. IMPLEMENTED METHOD

3.1 Gradient Descent

Based on [3] Vogel et al. [4] reformulated a forward-projection model for the dark-field:

dj = exp

[
−
∫
Lj

∑
k

〈∣∣∣Îj × ε̂k∣∣∣ ζk(x)ε̂k, t̂j

〉2
dx

]
. (3.2)

Where dj denotes the j-th dark-field signal measured by the ray Lj and its normalized direction
Îj . Note that one specific pixel of the detector image of one specific pose is represented by the
independent measurement j. Thus the index j = 1, .., J has the length of J = M ·N · P , where
M and N are the detector’s resolution and P is the number of acquired projections. t̂j denotes the
normalized sensitivity direction, defined to be orthogonal to the grating lines and parallel to the
grating’s surface.

By reformulating this equation one can separate this model into the unknown part, the squared
scattering coefficients ηk(x) := ζk(x)2, and a constant weight factor, which is only dependent on
the setup’s geometry:

vkj =
(∣∣∣Îj × ε̂k∣∣∣ 〈ε̂k, t̂j〉)2 (3.3)

Inserting and taking the logarithm leads to the following measurement:

mj := − ln dj =

∫
Lj

∑
k

vkj · ηk(x)dx =
∑
k

vkj

∫
Lj

ηk(x)dx (3.4)

In a discretized manner the line-integrals are rewritten by a scalar product

mj =
∑
k

vkj〈aj,ηk〉 =
∑
k

vkja
T
j ηk. (3.5)

ηk ∈ RI is a vector containing the squared coefficients for the k-th scatter direction for each voxel
element (I is the number of voxel elements) and aj ∈ RI is the j-th row of the measurement matrix
A which is defined in the same manner as in attenuation reconstruction [14]. Introducing the dark-
field measurement vectorm = (mj)j=1,...,J and a diagonal scaling matrixDk = diag(vk1, vk2, ...),
one defines a huge linear equation systemH (see also [4]):

m = (D1A,D2A, ...,DkA)


η1

η2
...
ηk

 (3.6)
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RedefiningH := (D1A,D2A, ...,DkA) and sT := (η1,η1, ...,ηk) leads finally to the follow-
ing clear and compact representation of the latter system:

m = Hs (3.7)

Linear equation systems are often solved by computing an approximate solution of the least
squares minimization problem. Let us recall that solving the prior derived equation is equal to
minimizing the following functional.

f(s) = ‖Hs−m‖22 = (Hs−m)T · (Hs−m) (3.8)

A common and easy-to-implement algorithm is the gradient descent, which is an iterative method,
gradually approximation the solution. Starting with an initial solution, one calculates the next
iteration by following update rule:

sk+1 = sk − tk∇f(sk), (3.9)

where tk denotes the step length for each step and∇f the gradient, which is calculated as follows:

∇f(s) = 2 ·HT (Hs−m) (3.10)

In order to further analyze the meaning of the gradient step, let us recall that H is the huge
XTT system matrix which was formed by multiplication of the weighting factors of each scatter
direction with the attenuation system MatrixA. Subsequently, by looking at the multiplication
of one submatrix DjA in H with its corresponding scatter coefficient vector sj = ηj , we find
that this is nothing more than a weighted forward projection. Forward projection of all scatter
directions is then equal to calculating the dark-field signals of the current reconstruction result. In
the same manner the transposeHT describes a back projection into the volume spanned by the
particular scatter direction.

The algorithm can be rephrased into simpler words: Iteratively calculate the difference between
the measured dark-field and the forward-projected reconstruction result and project this difference
back into the 3D tensor space.
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3.2 Gradient Descent with Zero-Constraint

Since the optimal step length of the gradient descent cannot be calculated or approximated
properly without high computational effort, this algorithm would require handcrafted adaption of
parameters and additionally might run into local minima. In order to circumvent these numerical
instabilities we make use of the concept of the zero-constrained gradient descent which was
already introduced by Bayer et al. [2]. This approach finds its justification in the fact that one can
assume that scattering is only observed in real objects and is zero in the air phase.

Figure 3.1: Reconstructed absorption image of the wooden block example used for zero constraint.

For real data the zero constrain can be obtained by reconstruction of the already available
attenuation signals acquired during the phase-stepping procedure in Talbot-Lau interferometry [11].
An example is given in figure 3.1. In the case of phantom data the zero constrain is already known
due to its modeling process.

3.3 Extraction of Tensorial Information

For each voxel the scattering coefficients ηk for the sampled scatter directions ε̃i are reconstructed
by XTT. Different approaches have been proposed to extract the tensorial information by fitting
an ellipsoid onto the latter [3, 4]. Following the argument of Vogel we use the PCA to extract the
ellipsoid’s parameters for reasonable computation time [23]. Hereby a set of 2K points in 3D
space is generated by scaling the scatter directions ε̃i with the reconstructed coefficients. With
addition of the same points, just scaled with -1, one ensures that the point set forms an actual
point set comprising ellipsoidal shape. More detailed information can be found in [4].



Chapter 4

Methods

In the following, methods implemented in our realization of XTT are presented. We first introduce
a novel method to calculate the scatter directions, followed by depiction of the experimental setup
in simulation. We further explain how data are visualized and conclude this chapter with definition
and generation of numeric phantom data.

4.1 Number and Definition of Scatter Directions

Malecki introduces the scattering directions as abstract entities without any further physical
justification. Moreover, Vogel notes that the exact orientation of the sampling direction is rather
arbitrary [4] and no prior knowledge is required to define those directions. Additionally, as
scattering is assumed to be a symmetric property, only one hemisphere is sampled.

In the evaluation of Malecki’s wooden block sample only 7 directions are chosen, the cube’s
edges and diagonals, but he states that for unknown objects a larger number is required. Since
an increasing number directly correlates to longer processing time, which becomes an important
factor for large data sizes, we are particularly interested how this number effects the quality of
reconstruction. Additionally, the scatter directions should sample the angular range as equidistantly
as possible. A manual choice of those, especially for an arbitrary number of scattering directions,
is cumbersome. Thus we make use of the method proposed by Saff [24] to generate N points on
a hemisphere, which will serve as the scatter directions. An example for a different numbers of
sampled points is given in figure 4.1.

11



12 CHAPTER 4. METHODS

(a) N=10 (b) N=15

(c) N=20 (d) N=40

Figure 4.1: Points are randomly sampled on the hemisphere with the method proposed by Saff [24].
While fitting the ellipsoid in a later processing step, every point of the hemisphere is mirrored.
For this reason we display here the whole sampled sphere, and not only the hemisphere.

4.2 Parallel Beam Geometry

To perform our numeric experiments we have implemented XTT in parallel beam geometry [14].
A parallel beam geometry is usually valid, if the geometric magnification M, defined by the ratio of
the source-object distance and source-detector distance, approaches unity [25]. The experiments
performed by ECAP provide a value of roughly unity with M = 180/160 = 1.125, thus using
parallel beam geometry is proper.

The projector and back-projector algorithms have been implemented according to the models
introduced in section 3.1. Both ray-driven and voxel-driven algorithms have been implemented for
computation on the CPU, where the voxel-driven has shown to give tremendous time advantages
[26]. We want to remark that GPU based methods are beneficial since the projector operators are
highly parallelizable.
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4.3 Tensor Tomography with two Trajectories

Malecki et al. [3] and Vogel et al. [4] sample the whole angular spectrum of the tomographic
sphere by using an eulerian cradle. For many applications a full tomographic scan is not feasible
due to mechanical restrictions or instabilities. However, projections from only two different
tomographic scans are easily obtained with state-of-the-art CT systems. For this reason we
investigate the behavior of XTT for two trajectories.

4.4 Visualization of Data

Since every sample position contains tensorial data, which cannot be visualized by traditional
3D images or even vector fields, visualization of the reconstructed data is challenging. Malecki
proposes two ways of data visualization: On the one side, he extracts the fiber directions, defined
as the ellipsoid’s shortest half-axis, and plots them as a vector field. On the other side, he encodes
the fiber direction by color. A drawback lies in the loss of information: It is not possible to
convey the tensorial character in this representation. Vogel takes up on this point and plots a color
encoded ellipsoid at every sample position. While the tensorial character is hereby maintained, it
becomes confusing when high resolution data are displayed, since no meaningful information is
conveyed to the user. Eventually he proposes a streamline visualization [4] due to their interest in
fibrous objects. We will restrict ourselves to plot the fiber directions, since they convey the most
meaningful message, at least regarding the type of objects we were considering.

4.5 Phantom Data

We design our phantom to hold an anisotropic scatter distribution, in other words: At every point
of the object, scattering is dominant in a particular direction. In order to create an analytical
phantom containing anisotropic scatter information a tensor field needs to be defined: At every
spatial position, a specific ellipsoid is defined by its three half-axes and their magnitudes. To
create this ellipsoid out of a set of given fiber directions, we define a ratio between the magnitude
of the smallest half-axis, defining the dominant fiber directions, and the remaining two. The
ellipsoid is assumed to be symmetric, which leads to equal eigenvalues for the second and third
half-axes. Since no real reconstruction data are publicly available, we estimate this ratio out of the
images provided in Vogel [4].

We evaluated our experiments on two well-defined phantoms. First, we rebuilt the wooden-
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block sample, see figure 4.2, which was used for the first dark-field orientation experiments [2, 3].
Due to its simplicity - the used wooden-block contains only two different layers of well-defined
orientations and homogeneous material - the phantom is not representative to show that two
trajectories suffice for XTT.

Figure 4.2: Visualization of the wooden-block sample. The phantom consists of four layers with
two distinct directions. The first and the third layer have the same direction, while the second and
the fourth are perpendicular. The directions are defined by the ellipsoid’s smallest half-axis.

With the second phantom, we modeled two ropes, fabricated from densely packed fibers,
which are piled together to form an intertwined helical structure. The fiber directions are then
defined tangential to the phantom’s skeleton in the lateral plane. To model a non-homogeneous
scattering strength, we increase its z-component linearly with the current rope’s height starting at
0. The centerline and fiber directions of the rope are defined by following equations, while the
second rope is generated by adding an 180 degree shift in the lateral plane:

x = R · cosαmax · t

y = R · sinαmax · t



4.6. CREATION OF DARK-FIELD IMAGES 15

z = z0 + L · t2

dx = s · sinαmax · t

dy = −s · cosαmax · t

dz = s · t

t ∈ [0, 1], (4.1)

where x,y and z denote the spatial coordinates and d = (dx, dy, dz)
T is the corresponding fiber

direction.

Finally, after a proper definition of the tensor field, one needs to calculate the scatter weights
to form the actual phantom. By definition, these are the projections onto the ellipsoid’s surface
and are extracted by applying the hard ellipsoid constraint proposed in Vogel [4].

4.6 Creation of Dark-Field Images

By creation of a pure phantom volume containing just its scatter weights, no dark-field images are
generated yet. By applying the physical model proposed by Malecki [3] one is able to define a
proper forward propagation model to create the dark-field projection images. We want to stress
that this method can only prove self-consistency of the proposed algorithm. A more physical
justification of XTT is possible by applying a wave-simulation propagation algorithm, as proposed
by Malecki [27] or Ritter [28]. As none of the simulation software have been available to us, we
restrict ourselves to prove the latter mentioned self-consistency.

In order to create the most reliable projections images the angular spectrum spanned by the
arbitrarily chosen scatter directions has to be sampled as best as possible. We chose a significantly
higher number of scatter directions for creation of the dark-field projections images to avoid
possible sampling errors.

The dark-field images of the wooden-block and the rope phantom are displayed in sinogram
representation in the figures 4.3, 4.4 and 4.5. Two major differences of the dark-field signal in
comparison to traditional absorption imaging are observed. First, since absorption imaging cannot
differentiate between the orientation of a specimen, one would observe the same transmission
images for layer 1 and layer 2 in the wooden-block sample. Thus computed tomography would
reconstruct a homogeneous object and directional information is lost. Secondly, the dark-field’s
dependency on the direction of the incoming beam can be observed in the sinogram images. At
layer 1’s highest dark-field contrast, layer 2 shows the lowest contrast. The inverted behavior is
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observed at an π/2 rotated detector position, see figure 4.3. Similar behavior is observed for the
more complex sinograms of the rope phantom. Directions with a maximum dark-field signal and
the π/2 rotated complementary with almost no signal strength are again observed.

(a) Layer 1, Trajectory 1. (b) Layer 2, Trajectory 1. (c) Trajectory 2.

Figure 4.3: Sinogram of the wooden-block phantom for two trajectories. The second is perpen-
dicular to the first. For the first trajectory, the sinograms of the two layers are different, because
their internal scattering structure is different. For the second trajectory, the wooden-block sample
creates the same signal for every possible ray due to its homogeneity: One observes the same
sinogram for every z-slice.

(a) View 1 (b) View 2 (c) View 3

Figure 4.4: dark-field images of the rope phantom for trajectory 1.
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(a) View 1 (b) View 2 (c) View 3

Figure 4.5: dark-field images of the rope phantom for trajectory 2.
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Chapter 5

Results

In the following results are presented. We show XTT reconstruction of phantom data (see section
4.5) with only two trajectories. Then, we demonstrate the influence of choice of scatter directions
on reconstruction results.

5.1 Reconstruction Results

Since XTT was introduced on experiments conducted with an eulerian cradle enabling a full
tomographic scan [3] no evaluation with only two mutually perpendicular trajectories is known
to us. We performed XTT on the wooden-block phantom (Figure 5.1) and the rope phantom
(Figure 5.2), where the underlying dark-field images were generated by forward-projection of the
phantoms on the latter two traditional trajectories. For each trajectory a 180 degree scan with an
angular step of one degree was performed. In total, 360 projection images (180 per trajectory)
were obtained and used for reconstruction.

For the wooden-block phantom the fiber directions were reconstructed correctly in the most
parts. At the boundaries the fiber directions are bent, which is probably due to a non-steady
transition in the zero-constraint. The reconstruction of the lowermost layer is wrong due to
discretization errors.

To investigate the numeric behavior of XTT on more complex objects, experiments on the rope
phantom for two different sets of scatter directions (N=13 and N=20) were performed. Generally,
the reconstructions are in good accordance with the ground-truth data. At the object boundaries
and at specific regions with high curvature and a rapidly changing scatter distribution, deviations
from the ground-truth are observed for both N=13 and N=20. Hereby, N=13 seems to provide a
slightly better reconstruction compared to N=20, which is probably due to a better step length

19
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choice in the gradient descent. During our experiments we found that the optimal step lengths
depends crucially on the particular set of scatter directions.

Figure 5.1: Reconstruction of the wooden-block phantom.
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(a) Ground truth (b) Reconstruction N = 13 (c) Reconstruction N = 20

Figure 5.2: Visualization of the rope phantom. (a) ground-truth, (b) and (c) reconstruction with
N = 13 and N = 20 scatter directions

5.2 Gradient Descent Analysis

In this work XTT was performed with the zero-constrained gradient descent method. Since
reconstruction of both phantoms with only two trajectories has not been proper for all regions, we
have analyzed the convergence of the gradient descent for the wooden-block phantom. In figure
5.3 we plotted the residual error of the gradient descent, thus the difference between the dark-
field images and the forward-projected reconstruction result. The gradient descent convergences
quickly in the first couple of iterations but does not improve significantly for iteration numbers
larger then 25.

Probable reasons for the improper reconstruction are: First, the zero-constrain comes together
with a non-steady transition at the object’s boundaries, which is unnatural and hinders the gradient
descent to converge to valid values at the boundary. Second, the optimal step length of the
gradient descent is unknown and cannot be estimated easily. Better results are expected if more
sophisticated reconstruction algorithms are used.
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Figure 5.3: Residual error of the gradient descent XTT.

5.3 Influence of Scatter Directions

Since we are working on phantom data, the measures of the normalized residual norms and
normalized mean updates, as introduced in Vogel [4], are not the best suited. Instead, we propose
the mean angular deviation of the reconstructed tensor’s smallest eigenvector αi

r to its respective
one in the well-defined phantom αi

p over all voxel elements N :

ᾱ =
1

N

N∑
i

∣∣∣∣∣∣αi
p −α

i
r

∣∣∣∣∣∣ , (5.1)

In the following, we will interpret the smallest half-axes of the reconstructed scattering
ellipsoids as fiber directions. We want to stress that this assumption is still a matter of research
and should be handled with care if applied on real data.

We evaluated the reconstruction result with the mean angle deviation for different sets of
scatter directions. The reconstruction result of the wooden-block sample is shown in figure 5.4.

The error is significant larger for numbers below 4, which is understandable because no
meaningful tensorial data can be fitted. For numbers between 4 and 8 the error is reduced but
takes more or less the same value. Beginning with 9 directions the error drops again significantly
and provides reasonable results. Generally the error decreases with a growing number of scatter
directions, but the improvement is comparably low.

We conducted the same experiment with the rope-phantom, see figure 5.5, and experienced
similar behavior. The error is high for low numbers of scatter vectors and drops off quickly to a
first plateau at 8 scatter vectors. A second significant drop off is observed at 15 scatter vectors,
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Figure 5.4: Reconstruction error for the wooden-block phantom.
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Figure 5.5: Reconstruction error for the rope phantom.

while no further improvement is visible for higher numbers.
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Chapter 6

Discussion and Outlook

6.1 Discussion

In this paper we analyzed XTT by using well-defined phantom data [3, 4]. We have shown that
reconstruction is generally possible with just two tomographic scans available, which enables
recovering of tensorial data with a simpler laboratorial setup than proposed in Malecki. The
algorithm has been adapted using a gradient descent method with a zero constraint.

Using the work of Saff [24] to sample an arbitrary number of scatter directions on a hemisphere,
we have been able to analyze the influence of the number of scatter directions on the reconstruction
results. For the used phantoms the accuracy between 7 scatter directions and 13 was evident. For
higher number of scatter directions the results have shown to still improve slightly, but the cost of
higher processing time does not justify usage of significantly higher numbers of scatter directions.

While the general results are in good accordance with ground-truth data we observed particular
regions in the phantom, where no proper reconstruction of the fiber direction was possible. Up
to this point, we have not been able to deduce the cause. We have two assumptions: First, the
implemented adaption of the gradient descent could behave disadvantageous due to a bad step
length choice or unsteadiness in the zero-constrains. Or secondly, and this would have more
severe consequences for future clinical applicability, that two tomographic trajectories do not
suffice for reconstructions.

6.2 Outlook

For future work, we are aiming to adapt the algorithm on real data. With an improved algorithm,
a further going comparison between XTT and the method proposed by Hu et al. [1] can be
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performed. Real data analysis with the laboratory setup proposed by Bayer [2] is not yet possible
due to missing calibration of the geometrical setup.

For this reason it was not possible to register real data datasets successfully. Also, since the
noise level is predominant in the real data dark-field projections, a further objective is to evaluate
the phantom results under presence of noise.

Another aim is to adapt the geometry to a helical one, in the same manner as already known due
to by absorption CT, see [29] or recently published by Marschner et al. [30] for phase contrast CT.
This may provide a faster acquisition time and would be a subsequent step to clinical application.
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