Polychromatic Maximum Likelihood Reconstruction for Talbot-Lau X-ray Tomography

Florian Schiffers^{1,2}, Sebastian Käppler¹, Shiyang Hu¹, Jens Rieger², Georg Pelzer², Andreas Wolf², Andreas Maier¹, Thilo Michel², Christian Riess¹, Gisela Anton²

¹ Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany ² Erlangen Centre for Astroparticle Physics, Department of Physics, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany

Introduction

Polychromatic artifacts in Talbot-Lau tomography due to energy dependence of

- Material: Attenuation coefficient $\mu(E)$, refractive decrement $\delta(E)$ [1], and scatter coefficient $\sigma(E)$ [2]
- Talbot-Lau interferometer: Spectrum $N_0(E)$, spectral visibility $V_0(E)$ and energy dependent reference phase $\phi_0(E)$

Figure 1: Superposition of mutually independent forward projections for phase-stepping data (here shown for phase step 0) at different energies result in the expected phase-stepping data in a polychromatic setup.

Clinical application requires beam hardening correction

Materials and Methods

- Goal: Simultaneous reconstruction [3] of attenuation, phase and scatter coefficients inherently removing polychromatic artifacts
- Estimate phase-stepping data (Fig. 1) seen by pixel *i* at G_2 stepping position *s*

 $N_{i,s} = \int dE \ N_i(E) \cdot (1 + V_i(E) \cdot \cos \phi_{i,s}(E))$ with $N_i(E) = N_i^0(E) \cdot T_i(E)$ $V_i(E) = V_i^0(E) \cdot D_i(E)$ $\phi_{i,s}(E) = \phi_i^0(E) + \phi_s + \Delta \phi_i(E)$

- Reference images $N_i^0(E)$, $\phi_i^0(E)$, and $V_i^0(E)$ obtained using wave propagation simulation (Fig. 2)
- Attenuation $T_i(E)$, differential phase $\Delta \phi_i(E)$, and dark-field $D_i(E)$ at

Figure 2: Spectral visibility and X-ray **Figure 3:** (Differential) footprint spectrum for the interferometer used in of Kaiser-Bessel function. the evaluation.

energy E given by

$$T_i(E) = \exp\left(-\sum_j M_{ij} \cdot \mu_j(E)\right)$$
$$D_i(E) = \exp\left(-\sum_j M_{ij} \cdot \sigma_j(E)\right)$$
$$\Delta\phi_i(E) = \sum_j M_{ij}^{\delta} \cdot \delta_j(E)$$

- System matrix elements M_{ij} and M_{ij}^{δ} calculated by integration over footprint of Kaiser-Bessel function (Fig. 3)
- $\mu(E)$, $\delta(E)$, and $\sigma(E)$ extrapolated using a physical model
- Minimization of negative log-likelihood

 $l(\theta \mid \mathbf{N}) = \sum_{i,s} -N_{i,s} \cdot \ln(\overline{N}_{i,s}) + \overline{N}_{i,s}$

Results and Discussion

 Synthetic CT data affected by polychromatic effects generated from welldefined phantom using proposed forward model (Fig. 4) **Figure 4:** First row: ground truth data. Second row: reconstruction error using filtered backprojection. Third row: reconstruction error with proposed iterative method and polychromatic forward model.

- Reconstruction removes polychromatic artifacts (Fig. 5)
- Slow convergence of phase-image

Conclusions

- Reconstruction method for Polychromatic Talbot-Lau imaging
- Experiments with synthetic phantom show strong artifact reduction
- Efficient optimization method for phase-image required
- Further experiments with real data in progress

Contact

Florian.Schiffers@fau.de, Sebastian.Kaeppler@fau.de

(a) Attenuation

(b) Refractive decrement (c) Scatter

Figure 5: Two cross-sections through the reconstructed data as visualized in Fig. 4. Black: Phantom ground truth, Blue: Filtered Backprojection, Red (dashed): Proposed reconstruction method. For all images, the iteratively reconstruction and ground truth are in high agreement.

References

[1] N. Bevins *et al.*: "Beam hardening in x-ray differential phase contrast computed tomography," in Medical Imaging, March 2011.
[2] G. Pelzer *et al.*: "A beam hardening and dispersion correction for x-ray dark-field radiography," Medical Physics, vol. 43, May 2016.
[3] A. Ritter *et al.*: "Simultaneous maximum-likelihood reconstruction for x-ray grating based phasecontrast tomography avoiding intermediate phase retrieval," arXiv:1307.7912, Jul. 2013.