

FACULTY OF ENGINEERING

Polychromatic Reconstruction for Talbot-Lau X-ray Tomography

Florian Schiffers, Sebastian Kaeppler, Georg Pelzer, Andreas Wolf, Andreas Maier, Gisela Anton and Christian Riess

ERLANGEN CENTRE FOR ASTROPARTICLE PHYSICS

Wooden splinter in pig foot

Absorption

Diff. Phase

J. Rieger *et al.*: "Optimization procedure for a Talbot-Lau x-ray phase-contrast imaging system", 2017.

Optical image

I I I I I I I I I

Dark-Field

Mammography: micrometer-sized calcifications

Dark-Field

T. Michel *et al.*: "On a dark-field signal generated by micrometer-sized calcifications in phase-contrast mammography", 2013.

Human knee

F. Horn *et al.*: "High-energy x-ray grating-based phasecontrast radiography of human anatomy ", 2016.

Dark-Field

Absorption

F. Horn *et al*.: "High-energy x-ray grating-based phasecontrast radiography of human anatomy ", 2016.

Human knee

Talbot-Lau X-ray Imaging

Parameter fitting

Parameter fitting

Information retrieval

Attenuation

Dark-field

$$D = \frac{V_{obj}}{V_{ref}} = \frac{A_{obj}}{I_{obj}} \cdot \frac{I_{ref}}{A_{ref}}$$

Attenuation

Differential Phase

Attenuation Scatter

Polychromatic imaging of larger objects

- Beam hardening leads to artifacts in attenuation CT
 - Cupping and streak artifacts
 - Reason: energy dependent attenuation coefficients
- Talbot-Lau interferometry
 - Energy dependent refraction and scattering
 - Other energy dependencies:
 - reference phase
 - reference visibility

Dark-field due to beam hardening

- Visibility V: Energy dependent contrast
- Dark-field Image: Loss of visibility due to object scattering
- BUT: Can be due to beam hardening

Polychromatic Model for Iterative Reconstruction

- Iterative reconstruction beneficial for Talbot/Lau imaging
 - Implicit modelling of noise
 - Allows flexible acquisitions
 - Avoids phase retrieval which can lead to complex noise statistics
- This work: polychromatic forward model for statistical iterative reconstruction

Attenuation

Refractive decrement

Scatter

Attenuation

Transmission

Diff. phase

Refractive decrement

Scatter

Dark-field

From monochromatic to polychromatic

Polychromatic Forward Model

Conclusion

- Polychromatic artifacts in grating-based X-ray imaging
- Polychromatic forward model
- Iterative reconstruction **removes** artifacts

Future work

- Evaluation on real data
- Efficient implementation of algorithm

Thank you

Attenuation

Phase

