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Abstract—Objective: Highly-undersampled, dynamic MRI 

reconstruction, particularly in multi-coil scenarios, is a 
challenging inverse problem. Unrolled networks achieve state-of-
the-art performance in MRI reconstruction but suffer from long 
training times and extensive GPU memory cost. Methods: In this 
work, we propose a novel training strategy for IMplicit UNrolled 
NEtworks (IMUNNE) for highly-undersampled, multi-coil 
dynamic MRI reconstruction. It formulates the MRI 
reconstruction problem as an implicit fixed-point equation and 
leverages gradient approximation for backpropagation, enabling 
training of deep architectures with fixed memory cost. This study 
represents the first application of implicit network theory in the 
context of real-time cine MRI. The proposed method is evaluated 
using a prospectively undersampled, real-time cine dataset using 
radial k-space sampling, comprising balanced steady-state free 
precession (b-SSFP) readouts. Experiments include a 
hyperparameter search, head-to-head comparisons with a 
complex U-Net (CU-Net) and an alternating unrolled network 
(Alt-UN), and an analysis of robustness under noise 
perturbations; peak signal-to-noise ratio, structural similarity 
index, normalized root mean-square error, spatio-temporal 
entropic difference, and a blur metric were used. Results: 
IMUNNE produced significantly and slightly better image 
quality compared to CU-Net and Alt-UN, respectively. Compared 
with Alt-UN, IMUNNE significantly reduced training and 
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inference times, making it a promising approach for highly-
accelerated, multi-coil real-time cine MRI reconstruction. 
Conclusion: IMUNNE strategy successfully applies unrolled 
networks to image reconstruction of highly-accelerated, real-time 
radial cine MRI. Significance: Implicit training enables rapid, 
high-quality, and cost-effective CMR exams by reducing training 
and inference times and lowering memory cost associated with 
advanced reconstruction methods. 

Index Terms—Compressed sensing, deep learning, image 
reconstruction, implicit network, unrolled network 

I. INTRODUCTION 
INE cardiovascular magnetic resonance (CMR) is the gold 
standard imaging test for evaluation of cardiac function 

and volumes [1], [2]. The standard pulse sequence is the 
retrospective, electrocardiogram gated, breath-held cine MRI 
with balanced steady state free precession (b-SSFP) readout 
[3]. In patients with arrhythmia and/or dyspnea, breath-hold, 
b-SSFP cine MRI may yield nondiagnostic image quality due 
to ghosting image artifacts [4]. In such scenarios, a real-time 
cine MRI may mitigate these artifacts. Standard real-time cine 
MRI using parallel imaging [5], [6], however, produces poor 
spatio-temporal resolution. One approach to achieve relatively 
high spatio-temporal resolution in real-time cine MRI is 
highly accelerating the scan using compressed sensing (CS) 
[7]. For data acceleration with CS, the incoherent k-space 
sampling pattern could be achieved with either Cartesian [8], 
[9] or non-Cartesian [10]–[12] approaches, with each having 
advantages and disadvantages. In this study, we focus on 
radial k-space sampling with tiny golden angles, which has the 
following advantages [13]: (a) incoherent k-space sampling; 
(b) retrospectively rebin to arbitrary acceleration rate to 
achieve patient-specific temporal resolution based on heart 
rate. A major hindrance to clinical translation with CS 
accelerated real-time cine with radial k-space sampling is the 
lengthy reconstruction time, owing to the iterative nature and 
also to the need to conduct nonuniform fast Fourier transform 
(NUFFT) [10], [14]. 

In recent years, deep learning (DL) reconstruction 
techniques have witnessed a remarkable surge of interest due 
to their promising ability to overcome the inherent challenges 
of iterative reconstruction methods. The most straightforward 
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DL-based reconstruction techniques are the so-called post-
processing or denoising networks [14]–[16]. These algorithms 
“learn” a function that maps a zero-filled MR image that is 
contaminated with aliasing artifacts to its de-aliased 
counterpart. The a-priori learning phase requires a large 
dataset consisting of pairs of aliased images and their 
corresponding “ground truth.” This approach, however, allows 
much faster inference than what is achievable with an iterative 
technique. Nevertheless, performance of purely data-driven 
denoisers depends highly on the size and the quality of the 
training dataset at hand. Furthermore, in general, there are no 
theoretical guarantees for performance or generalizability of 
the trained network. This a common problem in DL [17]. 
Closely related is the issue of adversarial attacks or instability 
with respect to small perturbations in the input [18], [19]. 

State-of-the-art reconstruction methods aim to combine the 
advantages of physics-based iterative and data-driven 
techniques [20], [21]. It has been shown that incorporating 
forward and adjoint operators into convolutional neural 
network (CNN)-based reconstruction increases stability and 
robustness against adversarial attacks [22]. Another study 
showed that including the forward model lowers the maximum 
error bound of the network [23]. An entire class of hybrid 
architectures has been derived from iterative algorithms by 
enhancing them with learned components. These networks are 
called variational, cascaded or unrolled networks as they often 
resemble an “unrolled” cascade of blocks, each consisting of a 
physics prior and a CNN-based regularizer. Therefore, each 
block successively refines the initial solution by 
simultaneously enforcing consistency with the measured k-
space and regularizing the solution according to a data-driven 
term. Integrating prior knowledge into the architecture as a 
differentiable form of the imaging operator, enables 
significant reduction in the necessary training data [23], [24]. 
For several important iterative algorithms, such as ADMM 
[25] or ISTA [26] corresponding unrolled architectures have 
been successfully developed [27]–[29]. 

Although unrolled networks are effective with Cartesian 
acquisition schemes [30], [31], they require extensive 
computational capabilities in the case of non-trivial forward 
and adjoint operators (e.g., NUFFT [32]) to compute and 
propagate the error gradients “through” the model operators. 
Additionally, end-to-end training requires storing intermediate 
gradients of each block during backpropagation within the 
GPU VRAM.  This computational bottleneck is a major 
hindrance to apply unrolled networks to multi-dimensional 
MRI with computationally demanding imaging operators [30], 
[32]. 

In this paper, we propose a novel strategy called IMplicit 
UNrolled NEtwork (IMUNNE) that leverages implicit 
network theory [33]–[35] to overcome the memory and 
training time limitations associated with unrolled networks, 
while retaining their advantages. Implicit networks have 
shown promising results in various machine learning tasks 
[36]–[38], and by incorporating implicit network theory into 
the framework of unrolled networks, we aim to reduce the 
computational burden and enhance the applicability of 

unrolled networks to multi-dimensional MRI reconstruction 
with radial k-space sampling. 

Our research focuses on multi-coil 2D real-time cardiac 
cine MRI obtained using radial k-space sampling, where we 
evaluate the IMUNNE approach extensively. We compare the 
performance of our proposed method with two state-of-the-art 
methods: (a) a complex U-Net (CU-Net) [14], [30]; (b) end-to-
end alternating unrolled network for non-Cartesian dynamic 
MRI reconstruction (Alt-UN) [32]. The main contributions of 
our work are as follows: 
• We propose a novel strategy to train unrolled networks in 

the context of highly-undersampled, multi-coil dynamic 
MRI reconstruction. In particular, we reinterpret the end-
to-end cascaded structure as an implicit network and 
apply Jacobian-free backpropagation  [33] strategy to 
approximate the error gradient for weight updates. This 
strategy drastically reduces the computational demand 
and memory requirements during training, thereby 
enabling more complex operators and larger input sizes. 

• We demonstrate this by applying IMUNNE as a 
reconstruction algorithm on a multi-coil real-time cine 
MRI dataset, using b-SSFP readouts. The method shows 
superior performance compared to state-of-the-art 
reconstruction techniques on the given dataset, which 
suggests versatility and adaptability of the method for 
real-time cine MRI using radial k-space sampling. 

• We demonstrate that training IMUNNE does not require a 
large dataset.  Moreover, IMUNNE consistently performs 
well when evaluated on noise-corrupted data. These 
benefits are typical of end-to-end unrolled networks and 
remain true for IMUNNE, even though the method avoids 
full end-to-end training and only approximates the correct 
error gradient. 

 
The structure of the paper is organized as follows: In 

Section II, we provide a formal introduction to the 
reconstruction problem and present the details of the CNN-
block used in our proposed method, along with the training 
strategy employed. Section III presents a comprehensive set of 
experiments conducted to validate the computational efficacy, 
accuracy and robustness of our approach. We compare our 
results with CU-Net – a purely data-driven approach – and 
Alt-UN – an end-to-end trainable unrolled network for real-
time cine MRI using radial k-space sampling. Additionally, in 
Section IV, we discuss the main advantages and limitations of 
our work. There, we also provide a theoretical comparison of 
our method with related works. Finally, in Section V, we 
conclude our findings and discuss future research directions. 

II. METHODOLOGY 

A. Theoretical Background 
 The inverse problem of undersampled MRI reconstruction 
can be described as the following minimization problem: 

𝑚𝑚𝑚𝑚𝑚𝑚
𝒙𝒙
�|𝑨𝑨𝒙𝒙 − 𝒚𝒚|�

2
2 + ℛ(𝒙𝒙), 

(1) 
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where 𝑨𝑨 is the NUFFT operator, 𝒙𝒙 the unknown image, 𝒚𝒚 the 
undersampled k-space data impacted by noise, and ℛ a 
regularizer function restricting the solution space. 
Traditionally, this minimization problem is solved by iterative 
approximation algorithms, such as the conjugate gradient 
(CG) method. In our work, we are primarily concerned with 
multi-coil, real-time cine MRI using radial k-space sampling. 
In particular, 𝒙𝒙 ∈ ℂ𝑑𝑑, with 𝑑𝑑 = 𝑑𝑑𝑥𝑥 × 𝑑𝑑𝑦𝑦 × 𝑑𝑑𝑡𝑡 being the two 
spatial dimensions and the temporal dimension, respectively; 
𝒚𝒚 ∈ ℂ𝑑𝑑𝑥𝑥×𝑑𝑑𝑠𝑠𝑠𝑠×𝑑𝑑𝑡𝑡×𝑛𝑛𝑐𝑐, 𝑚𝑚𝑐𝑐 denoting the number of coils, 𝑑𝑑𝑠𝑠𝑠𝑠 being 
the number of radial spokes per time frame; and 𝑨𝑨 given by 
the concatenation of the operator 𝑪𝑪:ℂ𝑑𝑑 → ℂ𝑑𝑑×𝑛𝑛𝑐𝑐, which 
multiplies the cine image with each of the coil sensitivity 
maps, and the NUFFT applied to each of the coil images. As a 
formula: 

𝑨𝑨 ≔ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 ∘ 𝑪𝑪. 
(2) 

For highly accelerated sampling, i.e., 𝑑𝑑𝑠𝑠𝑠𝑠 ≪ 𝑑𝑑𝑦𝑦, the 
Nyquist sampling criterion is not satisfied, and thus the 
problem is ill-conditioned. The higher the undersampling rate, 
the more the solution depends on the correct choice of 
regularization [39]. Traditionally, iterative minimization 
algorithms have employed different regularization strategies 
such as wavelet transform [40] or discrete cosine transform  
[41], [42]. In the context of real-time cine MRI, temporal total 
variation with L1 norm is widely used to enforce gradient 
sparsity in the time dimension [43]. However, for higher 
undersampling rates, the manual choice of the regularizer 
might prove insufficient to eliminate aliasing artifacts [44]. 

Unrolled networks [30], [32], [44], [45] can be seen as an 
iterative method which “learns” the optimal regularizer from a 
representative dataset. Assuming a differentiable regularizer 
ℛ, the gradient descent iterates for an optimal point of (1) are 
as follows: 

 
𝒙𝒙𝑘𝑘+1 ≔ 𝒙𝒙𝑘𝑘 − 𝑠𝑠 ⋅ [𝑨𝑨⊥(𝑨𝑨(𝒙𝒙𝑘𝑘) − 𝒚𝒚) + 𝛻𝛻ℛ(𝒙𝒙𝑘𝑘)] 

(3) 
with a scalar step size 𝑠𝑠 > 0. 

Next, we express the gradient of the regularizer 𝛻𝛻ℛ as a 
neural network 𝑁𝑁𝛩𝛩 with a trainable parameter set 𝛩𝛩 ≔
�𝜃𝜃1, … ,𝜃𝜃𝑠𝑠�. The update operator 𝑅𝑅𝛩𝛩,𝑠𝑠 to produce the next 
iterate 𝒙𝒙𝑖𝑖+1 ≔ 𝑅𝑅𝛩𝛩,𝑠𝑠(𝒙𝒙𝑖𝑖) is then given by: 

 
𝑅𝑅𝛩𝛩,𝑠𝑠 ≔ 𝑰𝑰𝑑𝑑(⋅) − 𝑠𝑠 ⋅ [𝑨𝑨⊥(𝑨𝑨(⋅) − 𝒚𝒚) + 𝑁𝑁𝛩𝛩(⋅)] 

(4) 
where 𝑰𝑰𝑑𝑑 denotes the identity map. 

Instead of iterating until convergence, “unrolled” networks 
apply the update operator 𝑅𝑅𝛩𝛩,𝑠𝑠 for a fixed number of times 𝑚𝑚, 
whereby an initial input is successively refined by each of the 
unrolled blocks (Fig. 1). This setup defines a differentiable 
algorithm that is solely dependent on the parameter set 𝛩𝛩, 
which can therefore be trained end-to-end using conventional 
error backpropagation [24], [46] to find the optimal 
parameters 𝛩𝛩. However, conventional error backpropagation 
to train unrolled networks limits the unrolling to only very 

small numbers of blocks since the memory requirements grow 
linearly with the network depth [30], [32], [33]. This problem 
is particularly exacerbated by the presence of computationally 
demanding operators, such as NUFFT, and/or multi-
dimensionality of real-time cine MRI data (i.e., multi-coil, 2D, 
time) [32]. 

B. Implicit Networks 
Another way to approach the minimization problem (1) is 

to consider the fact that the gradient of the (continuously 
differentiable) objective function attains zero at an optimal 
point 𝒙𝒙�. This has the consequence that 𝒙𝒙� is a fixed-point of the 
update operator 𝑅𝑅𝛩𝛩,𝑠𝑠: 

 
𝑅𝑅𝛩𝛩,𝑠𝑠(𝒙𝒙�) = 𝒙𝒙� − 𝑠𝑠 ⋅ [𝑨𝑨⊥(𝑨𝑨(𝒙𝒙�) − 𝒚𝒚) + 𝑁𝑁𝛩𝛩(𝒙𝒙�)]�����������������

=𝛻𝛻��|𝑨𝑨𝒙𝒙�−𝒚𝒚|�2
2+𝓡𝓡(𝒙𝒙�)�=𝟎𝟎

= 𝒙𝒙� 

(5) 

Under certain assumptions for 𝑅𝑅𝛩𝛩,𝑠𝑠, we can formulate the MRI 
reconstruction problem in the following form of an implicit 
fixed-point equation: 

𝑁𝑁𝑚𝑚𝑚𝑚𝑑𝑑 𝒙𝒙� 𝑤𝑤𝑚𝑚𝑤𝑤ℎ 𝒙𝒙� = 𝑅𝑅𝛩𝛩,𝑠𝑠(𝒙𝒙�). 
(6) 

The type of neural networks that find a solution of an 
implicit equation in the form of (6) are called implicit 
networks [33]–[35]. In contrast to classical feed-forward 
networks that produce an explicit deterministic output, 
implicit networks approximate the solution of an implicit 
equation via a fixed-point iteration similar to (3). 

 Given the inconsistent use of the term implicit in deep-
learning literature, it is important to clarify that the implicit 
networks mentioned earlier are categorically different from 
implicit neural representation networks [47], [48]. This 
distinction is crucial, particularly because neural 
representation networks have already been extensively applied 
to dynamic MRI reconstruction [49]–[51]. Our research is 
entirely unrelated to implicit neural representation networks. 
Therefore, whenever we refer to an implicit network, we are 
specifically referencing the type of networks that solve a 
fixed-point equation [33].   

The unrolled network structure defined by (4) can thus be 
viewed as an implicit network and the unrolled blocks 
correspond to the fixed-point iteration (Fig. 2), which solves 

Fig. 1.  Schematic illustration of the unrolled structure interpreted as an 
implicit network: Zero-filled input 𝒙𝒙0, which was obtained by the inverse 
NUFFT operator, is refined by the update 𝑅𝑅𝛩𝛩 until convergence. 𝑅𝑅𝛩𝛩 consists 
of a data-consistency term and learned regularizer. 
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the implicit problem stated in (6). Furthermore, if 𝑅𝑅𝛩𝛩,𝑠𝑠 is a 
contraction, i.e., it is 𝛾𝛾-Lipschitz with 𝛾𝛾 ∈ [0,1), a classical 
result in functional analysis guarantees linear convergence of 
the sequence defined in (3) [52]. 

One substantial advantage of implicit networks is that they 
use analytical gradients for backpropagation, and thus enable 
training of very deep architectures with fixed memory cost. 
Furthermore, analytical gradients allow network training when 
the number of unrolls is a priori unknown. In contrast, 
conventional backpropagation computes gradients for each 
block sequentially in the reverse order and, therefore, requires 
a fixed number of unrolls. Previous works used the costly 
Jacobian operator for the analytical weight update [34], [35]. 
However, a recent study showed that the true gradient can be 
approximated by backpropagating through last iteration only 
using Jacobian-free backprop (Fig. 2) [33]. The authors of [33] 
provide a theoretical error bound of the approximation and 
experimentally show that this approach even alleviates some 
of the constraints on the operator 𝑅𝑅𝛩𝛩,𝑠𝑠, e.g., the requirement 
for it to be a contraction. 

In our work, we apply this theoretical result heuristically to 
train an unrolled network “implicitly”, i.e., performing 
backpropagation through the last unrolled iteration only using 
multi-coil, real-time cine MRI datasets. Given the fixed-point 

iteration, weight sharing is used between the 𝑚𝑚 regularizers 
and, therefore, Jacobian-free backpropagation (i.e. only 
through the last block) is sufficient to calculate the updated 
weights for the entire architecture. This setup would not be 
possible with conventional backpropagation due to memory 
constraints of currently available GPU cards. To the best of 
our knowledge, this study represents the first application of 
implicit network theory to enable unrolled training in the 
context of multi-dimensional MRI. 
 

C.  Proposed Training Method 
In this work, we introduce IMUNNE, a simple scheme of 

gradient backpropagation through last iteration only. For 
architectures with identical unrolled blocks, we have 
explained in the last subsection how they can be reformulated 
as an implicit network and therefore benefit from Jacobian-
free backpropagation. Fig. 2 depicts the architecture and the 
IMUNNE training scheme. In the following, we will use the 
abbreviation IMUNNE for both the architecture and the 
training strategy. 

The structure is comprised of an unrolled CS scheme. The 
network receives zero-filled cine image 𝒙𝒙0 as input and passes 
it through a computational block 𝑚𝑚 times. In accordance with 
(4), the block computes the sum of the following three 
components: Model operator term involving NUFFT; a skip 
connection; and a data-driven regularizer term incorporating  a 
CU-Net [14], [30], [53] which acts as the regularizer 𝑁𝑁𝛩𝛩. Each 
time the cine image set is processed by the block, it is being 
refined, until after 𝑚𝑚 steps it yields the network output 𝒙𝒙𝑛𝑛. In 
contrast to CS, where the gradient step size 𝑠𝑠 is determined by 
the line search method for each iteration, we treat 𝑠𝑠 as a hyper-
parameter and keep it fixed for all unrolled blocks. More 
elaborate schemes to initialize (or even train) 𝑠𝑠 in combination 
with IMUNNE might be an interesting direction for future 
investigation, which is beyond the scope of this initial work. 

The regularizer block was realized by a CU-Net from the 
CINENet architecture [30] which we adapted to process 
2D+time input (Fig. 3). The authors showed the advantage of 

Fig. 2.  Unrolled architecture defined by the update operator 𝑅𝑅𝛩𝛩,𝑠𝑠: 𝑚𝑚 identical unrolled blocks consisting of data consistency (top), skip connection (center), and a 
learned regularizer term (bottom). Zero-filled initial estimate 𝑥𝑥0 is refined consecutively by each block. For the sake of brevity, the figure does not show the 
measured k-space and the coil-sensitivity maps which are part of the input for the data consistency blocks. The last block produces the final image 𝑥𝑥𝑛𝑛. End-to-end 
training can be achieved by either conventional or Jacobian-based, i.e. analytical, backpropagation. In contrast to end-to-end training, IMUNNE interprets the 
unrolled scheme as an implicit network and applies Jacobian-free backpropagation [33], i.e., error is propagated only through the last block, thereby approximating 
the true gradient. Due to weight sharing, this is sufficient to update all regularizers.  In our experiments, we use a complex U-Net to implement the learned 
regularizer 𝑁𝑁Θ. 
 

Fig. 3.  Complex U-Net (CU-Net) architecture: encoding/decoding stages 
enhanced with skip connections (dashed line). Each stage consists of 2D 
spatial followed by 1D temporal convolutional layers (cf. [30]). We use leaky 
ReLU as activation function and average pooling. The final 3D convolution 
layer produces the final output. We employed CU-Net both as IMUNNE 
regularizer (𝑁𝑁𝛩𝛩) and as a standalone denoiser network with the same number 
of parameters. 
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using a cascade of spatial convolutions followed by 1D 
temporal convolutions to better capture the spatial and 
dynamic features and to reduce the number of trainable 
parameters. In contrast to the original work, our version of the 
CU-Net consists of 3 encoding/decoding stages enhanced with 
skip connections. Each stage consists of 2D spatial followed 
by 1D temporal convolutional layers [30]. We used leaky 
ReLU as activation function and average pooling for 
dimensionality reduction. The final 3D convolution layer 
produces the network output. 

IMUNNE was trained in a supervised manner: the 𝐿𝐿2 
difference between 𝒙𝒙𝑛𝑛 and the ground truth image 𝒙𝒙 was 
computed as the final loss function. We used the ADAM [54] 
optimizer with default parameters. Due to memory limitations, 
we set the batch size to be 1. 

D. Experiments with Patient Data 
To assess the computational efficacy and accuracy of 

IMUNNE, we conducted several preliminary experiments with 
in-vivo patient data described in the next section. First, we 
performed an extensive hyper-parameter grid search to find 
optimal values for the step size 𝑠𝑠 and the number of unrolled 
blocks 𝑚𝑚. Finally, we compared IMUNNE to CU-Net and Alt-
UN. In the subsequent sections, we present comprehensive 
details pertaining to the utilized datasets, the evaluation 
methodologies employed, the implementation specifics of the 
proposed method, and the computational environment in 
which the experiments were conducted. 

E. Datasets 
We used a retrospective real-time cine dataset obtained 

using radial k-space sampling [10]. The dataset contained 49 
real-time cine scans using b-SSFP readout acquired from a 
cohort of 40 patients (9 patients had follow-up exams on 
different days; 30 men; mean age = 68 ± 9.7 years) with atrial 
fibrillation, as previously described [14]. All patients provided 
informed consent in writing and agreed to future analysis of 
data. This study was performed in accordance with protocols 
approved by our institutional review board (Northwestern 
University; protocol number: STU00205545 [approval date: 
10/08/2019]) and was Health Insurance Portability and 
Accountability Act (HIPAA) compliant.  

Each scan consisted of 11-18 slices per patient and 40 
cardiac frames per slice. We randomly split the dataset into 10 
cases for training, 10 cases for validation and 29 cases for 
testing. This split was motivated by several reasons: First, 
allocating approximately 20% of the data for training enabled 
us to manage the long training times. This is reinforced by the 
fact that unrolled networks require less training data in general 
[23], [24]. Second, assigning 60% of the dataset to testing 
achieves a higher level of statistical fidelity during evaluation. 
Finally, this setup accurately simulates the practical 
constraints of working in a clinical context with limited data 
availability. The sample unit for training was a single cine 
series resulting in 140 training, 137 validation and 410 testing 
cine sets. Due to reasons listed in [14], we obtained the ground 
truth using Golden-angle radial sparse parallel MRI (GRASP) 

[55]. The coil sensitivity maps were self-calibrated from time-
average data using the method described by Walsh et al. [56]. 
We applied coil compression to 8 virtual coils using PCA [57]. 
The reconstructed coil sensitivity maps were subsequently 
used within training and evaluation of the unrolled networks 
(IMUNNE and Alt-UN). For the initial reconstruction and 
throughout the experiments, we applied a simple ramp filter as 
density compensation for the radial trajectory.  
 Pertinent imaging parameters included: field of view (FOV) 
= 288 × 288 mm, matrix size = 160 × 160, spatial resolution = 
1.8 mm × 1.8 mm, slice thickness = 8 mm, TE = 1.4 ms, TR = 
2.7 ms, receiver bandwidth = 975 Hz/pixel, tiny golden angle 
sequence = 23.62814° [58], temporal resolution = 29.7 ms, 
and flip angle = 52°. We used 11 radial spokes per cardiac 
frame, corresponding to an effective acceleration factor of 15 
(compared to fully sampled Cartesian counterpart). 

F. Hyperparameter Search 
To find an optimal network configuration, we first 

performed a hyper-parameter 2D grid search for different 
numbers of unrolled blocks (𝑚𝑚 = 2,3,4,5,6) and fixed step 
sizes (𝑠𝑠 = 0.5, 0.6, … , 1.3, 1.4). To faithfully compare the 
different configurations, we trained each of them exactly with 
500 epochs. 

G. Comparison with CU-Net and Alt-UN 
We compared our IMUNNE strategy to a standalone CU-

Net acting as a denoiser reconstruction network. For a fair 
comparison, we used the same configuration, particularly the 
same number of trained parameters, as in the CU-Net within 
the unrolled architecture. In addition to the dataset described 
in the previous section, we also performed cross-validation of 
CU-Net trained on the extended training set comprising 80% 
of the data and evaluated on the remaining 20%. Moreover, 
we compared IMUNNE to Alt-UN, an end-to-end UN 
specifically targeting multidimensional non-Cartesian MRI 
reconstruction [32]. In contrast to our architecture, this 
approach alternates data-consistency and CNN-based 
regularization blocks within the end-to-end reconstruction 
pipeline to reduce the GPU memory requirements. 

Before training, the network weights were initialized using 
the default PyTorch initialization routine (e.g. uniform zero-
mean initialization for convolutional layers; negative slope = 
0.01 for leaky ReLU). For the sake of simplicity, we used the 
same learning rate of 5e-04 with a learning rate decay factor of 
0.95 every 30 epochs for all training instances. Both CU-Net 
and IMUNNE were trained for 500 epochs, respectively. Alt-
UN was trained according to the training scheme prescribed 
by the authors of the original publication [32]: the 
regularization block was pretrained followed by 150 epochs of 
fine-tuning of the end-to-end architecture. 

Finally, we performed the same comparison experiments 
using noise-corrupted k-space measurements as input. 
Specifically, a given k-space measurement kspm was 
corrupted by adding a scaled noise vector sampled from a 
complex normal distribution [59]. The scaling parameter for 
the noise was 0.1 × max�abs(kspm)�, where the right factor 
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stands for the maximum absolute value of kspm. 
Subsequently, we used the distorted data to evaluate the 
stability of the networks which had been trained on the 
original uncorrupted data, as described above. 

H. Evaluation Metrics 
To evaluate and compare the performance of IMUNNE 

between different hyper-parameter settings and with other 
methods, we calculated the peak signal-to-noise ratio (PSNR), 
the structural similarity index (SSIM) [60] and the normalized 
root mean-square error (NRMSE) of network outputs with 
respect to the corresponding ground truth. A reference-free 
blur metric [61] (0: sharpest; 1: blurriest) was calculated to 
assess the preservation of fine details. To assess sharpness in 
spatial domain, we computed the metric for each frame of the 
(𝑥𝑥,𝑦𝑦, 𝑤𝑤) cine series and report the mean value as “2D Blur”. 
To quantify temporal blurring, we follow the procedure in [62] 
and calculate the metric for the 1D-FFT-transformed series 
(𝑥𝑥,𝑦𝑦, 𝑓𝑓) which we refer to as “FFT Blur”. Finally, we report 
the combined spatio-temporal reduced reference entropic 
difference (ST-RRED) [63], [64] to evaluate to overall video 
quality. All measures were calculated over a central region of 
100×100 pixels, in order to focus on the heart region. Other 
relevant performance factors that we report are the training 
time and the evaluation time per instance. 

I. Implementation and Computational Environment 
To train the different network architectures, we used a 

Linux GPU workstation (NVIDIA A100-PCIE, 40GB VRAM 
GPU; AMD EPYC 7702P 64-Core CPU, 512GB RAM). All 
architectures were implemented using PyTorch with GPU 
acceleration. To incorporate backpropagatable NUFFT 
operators, we used the TorchKbNufft [65] library. The code 
implementation of the proposed method was made publicly 
available on GitHub1. 

For Alt-UN [32], we used the implementation which was 
provided by the authors as part of the original publication and 
only adapted it slightly to fit our datasets. However, we opted 
to eliminate the residual connection within the image domain 
since our datasets were reconstructed using an adaptable 
regularization weight, leading to different scaling magnitude 
between the zero-filled inputs and the reconstructed images. A 
visual comparison of the evaluation results, both with and 
without the skip connection, is shown in Fig. S3. In particular, 
the network version with the residual connection produced 
poor image quality. Otherwise, training was performed using 
the same hyperparameters as reported in the original 
publication with a trainable weight 𝜆𝜆. 

For both IMUNNE and Alt-UN, the network input 
consisted of four components listed in the following with the 
corresponding dimensions and their respective specific values 
(𝑥𝑥,𝑦𝑦: 2D spatial coordinates; 𝑓𝑓 number of time frames; 𝑐𝑐: 
number of coils; 𝑚𝑚𝑠𝑠𝑛𝑛: number of radial k-space spokes per 
time frame):  

 
1 https://github.com/niakovlev/IMUNNE 

• Zero-filled input / Ground truth data: 320 x 320 x 40; 
(𝑥𝑥,𝑦𝑦, 𝑤𝑤) 

• Measured k-space data: 320 x 8 x 11 x 40: (𝑥𝑥, 𝑐𝑐,𝑚𝑚𝑠𝑠𝑛𝑛, 𝑤𝑤) 
• Coil sensitivity maps: 8 x 320 x 320: (𝑐𝑐, 𝑥𝑥,𝑦𝑦). 

Since CU-Net does not require k-space, the network input 
consisted only of the zero-filled image, spatially cropped to 
the central region of 160 x 160 x 40. 

All subsequent evaluation experiments were conducted 
using the centred ROI of 100 x 100 x 40 pixels. 

III. RESULTS 
In this section, we present the results obtained from our 

experiments with patient data, focusing on the training 
behavior and reconstruction performance of the proposed 
method. 

A. Hyperparameter Choice 
The first experiment involved finding the optimal values for 

the step size 𝑠𝑠 and the number of unrolled blocks 𝑚𝑚 for the 
IMUNNE architecture. Except for the blur metric, all other 
evaluation metrics indicate 𝑚𝑚 = 5 and 𝑠𝑠 = 0.8 to be an 
optimal pair (see also supplementary Fig. S4). In the case of 4 
unrolls the blur metric shows  improvement for some large 𝑠𝑠 
values. However, since artificial sharpness can be introduced 
by an increased presense of noise [14], we continued to use 
the parameters (𝑚𝑚, 𝑠𝑠) = (5, 0.8) for subsequent experiments. 

A more extensive grid search would be required to 
thoroughly understand asymptotic behavior of the metrics for 
𝑚𝑚 → ∞ and 𝑠𝑠 → 0. Heuristically, one might expect better 
results to the degree 𝑅𝑅Θ,s is a contraction while simultaneously 
increasing the number of iterations. It is straightforward to see 
from (4) that this corresponds to the case of very small values 
of 𝑠𝑠 and large values of 𝑚𝑚. While this is an iteresting 
theoretical consideration, it is practically infeasible to test this 
scenario due to the following reasons: 

Fig. 4. Comparison of memory footprints of Alt-UN, IMUNNE and CU-Net 
during training, and GPU-accelerated CS reconstruction: The memory 
requirement for IMUNNE is constant regardless of the number of iterations, 
whereas Alt-UN shows a linear increase. Having the same trainable base,  
CU-Net and IMUNNE only differ due to additional storage of k-space and 
sensitivity maps within IMUNNE. The initial gap between Alt-UN and 
IMUNNE is caused by the difference in the number of trainable parameters 
(Alt-UN: 129K; IMUNNE 21.7K). Note that the number of unrolls/alterations 
is not applicable to CU-Net and CS which are, therefore, indicated as 
horizontal lines in the plot. 
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1. In order to have a practically relevant advantage to CS 
in terms of computational speed, 𝑚𝑚 must be 
significantly lower than the number of iterations in CS 
(30 in our case). 

2. In order to compensate for a low 𝑚𝑚, we need to increase 
𝑠𝑠 to allow the network to make “larger leaps” towards 
the optimum. This brings the operator 𝑅𝑅Θ,s further 
away from being a contraction. 

3. Due to lengthy training times (~3-5 days) for just one 
hyperparameter pair (𝑚𝑚, 𝑠𝑠), it is infeasible to perform a 
extensive grid search for larger number of unrolls, 
since both training and the inference time increase 
proportionally with 𝑚𝑚. 

Although these practical constraints (small 𝑚𝑚; large 𝑠𝑠) lead 
to a deviation from the theoretically optimal scenario (large 𝑚𝑚; 
small 𝑠𝑠), the optimal values found through the limited grid 
search, nevertheless, produced promising results, as we 
illustrate in the following sections. 

B. Memory benchmarks 
To demonstrate the memory-efficiency of IMUNNE, we 

performed an ablation study with different numbers of 
unrolled blocks (IMUNNE) and different numbers of 
alterations (Alt-UN; parameter 𝑀𝑀 in the original publication 
[32]), respectively. We measured the peak allocated GPU 
memory (in megabytes) for each of the networks during 
training. Our results clearly indicate the advantage of 
IMUNNE (Fig. 4): constant memory requirement despite 

growing number of iterations since training is performed only 
using the last unrolled block. On the other hand, Alt-UN, 
being an end-to-end trainable architecture, demonstrates a 
linear increase in memory with the growing number of 
alterations. Note that the case of “0 alterations” corresponds to 
CNN pretraining and is not a UN in the strict sense. Due to 
memory limits of our GPU, it was only possible to perform up 
to 3 alterations for Alt-UN. Despite the same trainable 
component of IMUNNE and CU-Net (21.7K trainable 
parameters), the former requires the additional storage of raw 
k-space data and the sensitivity maps for the data-consistency 
component, which leads a minor increase in memory. The 
initial gap between the both unrolled networks is cause by the 
difference in the number of trainable parameters (Alt-UN: 
129K; IMUNNE: 21.7K).   
 

C. Performance Comparison 
Here, we demostrate the reconstruction results of the fully-

trained architectures. For IMUNNE, we used the hyperameters 
obtained through a grid search described above. Other relevant 
network and training  parameters are described in Sections II.F 
and II.G. 

Fig. 5 shows a representative example (see also 
supplementary Video S1 for dynamic display). Both unrolled 
networks clearly outperform the standalone CU-Net, even in 
case when CU-Net was  trained with an extended training 
dataset (80% of all available data). In particular, CU-Net fails  

Fig. 5.  Representative example from b-SSFP testing dataset. The upper row depicts the 15th frame along with the temporal profile along the vertical middle line 
(e.g., like M-mode in echocardiography; yellow line in the left image) of the cine series reconstructed with (from left to right): Compressed Sensing (ground 
truth image); inverse NUFFT of the undersampled k-space; CU-Net trained on 80% of the data; CU-Net; Alt-UN; IMUNNE. The bottom row shows the 
corresponding scaled difference images for each method. For dynamic display, see Video S1 in Supplemental Materials. 

𝑤𝑤 
 

Fig. 6.  Same representative example from b-SSFP testing dataset with noise-corrupted k-space as input. The upper row depicts the 15th frame along with the 
temporal profile along the vertical middle line (e.g., like M-mode in echocardiography; yellow line in the left image) of the cine series reconstructed with (from 
left to right): Compressed Sensing (ground truth image); inverse NUFFT of the undersampled k-space; CU-Net trained on 80% of the data; CU-Net; Alt-UN; 
IMUNNE. The bottom row shows the corresponding scaled difference images for each method. For dynamic display, see Video S2 in Supplemental Materials. 

𝑤𝑤 
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to remove the radial streaking artifacts. Compared to Alt-UN, 
IMUNNE showed slightly better image quality and 
significantly outperformed Alt-UN in all reported metrics 
except the spatial blur metric. Furthermore, IMUNNE was 
able to produce these results while reducing the training time 
from 124 hours to 80 hours (> 35% reduction); since our 
approach uses less unrolled iterations, the inference time was 
also reduced from 9.53 seconds to 2.04 seconds (> 75% 
reduction). The training and inference times and the image 
quality metrics are summarized in Table I. 

 
D. Robustness Analysis 

In this subsection, we demonstrate the comparison results 
under the presense of complex Gaussian noise. The k-space 
measurements were noise-corrupted as described in Section 
II.G. Subsequently, the architectures were evaluated using the 
noisy k-space data as input. 

Fig. 6 (see also supplementary Video S2) shows the same 
representative example as in Fig. 5. IMUNNE maintains its 
superior performance under presence of noise and successfully 
removes streaking artifacts. The evaluation metrics are 
summarized in the supplementary Table S.I which shows a 
similar trend as in the base case (uncorrupted k-space input). 

IV. DISCUSSION  
In this paper, we introduced a novel implicit training 

strategy for unrolled networks (IMUNNE) to address the 
challenges associated with memory-intensive end-to-end 
training of unrolled networks for multi-dimensional MRI 
reconstruction. Our approach leverages implicit network 
theory to approximate the gradient for weight updates during 
training, enabling us to overcome the computational 
bottleneck and efficiently apply unrolled networks to multi-
dimensional MRI datasets. 

Our experiments with 2D multi-coil real-time cardiac cine 
MRI dataset obtained using radial k-space sampling 
demonstrated the efficacy of IMUNNE. The results indicated 
that IMUNNE outperforms a purely data-driven approach 
(CU-Net reconstruction) and is competitive with a state-of-
the-art end-to-end unrolled network (Alt-UN). While 

achieving similar image quality, IMUNNE is able to cut down 
training time significantly since – in contrast to end-to-end 
training – backpropagation is performed only for the last 
unrolled iteration. Given the free GPU memory, it is possible 
to further reduce the training time for IMUNNE by increasing 
the batch size (Fig. 4). However, for the sake of simplicity and 
a fair comparison with the baseline methods, we fixed the 
batch size to 1. Additionally, the 2D blur metric indicated that 
IMUNNE preserves fine details slightly better, enhancing the 
resulting spatial resolution. The significantly better FFT blur 
metric points to improved temporal resolution achieved by 
IMUNNE. 

In the following, we present some theoretical 
considerations, discuss advantages and limitations of our 
proposed approach relative to other works. 

A. Limitations 
In order to calculate the fixed point of an implicit equation 

to a high degree of precision, implicit networks generally need 
to compute a large number of iterations [33], [34], [35], [52]. 
However, as we illustrated in Section III.A, the implicit 
network theory was only heuristically applied for IMUNNE; 
that is, the architecture could be trained for only a small 
number of unrolls due to practical constraints and lengthy 
training times. Despite this deviation from original implicit 
networks, we were able to successfully conduct a 
hyperparameter search to find the best values for the 
aforementioned parameters. As a result, IMUNNE showed 
promising results, outperforming CU-Net in terms of image 
quality and Alt-UN in terms of training and inference times. 

Furthermore, we only evaluated IMUNNE in a supervised 
training setting [32], where ground truth data was obtained 
through a priori CS reconstruction. This is a limitation since, 
in this case, IMUNNE can never learn to outperform CS [66], 
[67]. However, there is nothing inherent in our proposed 
method that would preclude its application in an unsupervised 
training scenario. We leave this interesting research direction 
for future investigations. 

B. Relation to Similar Works 
Although extensive research has been conducted to 

accelerate MRI reconstruction using unrolled networks [30], 

TABLE I 
QUALITATIVE EVALUATION METRICS, TRAINING TIMES, AND EVALUATION TIMES. 

*CU-NET TRAINED ON THE EXTENDED TRAINING DATASET (80%) AND EVALUATED ON A LIMITED TESTING SET (20%). 
**TRAINING INVOLVES PRETRAINING THE CNN BLOCK AND FINE-TUNING THE END-TO-END NETWORK [32].  

+#P > 0.05 CORRESPONDS TO NON-SIGNIFICANT DIFFERENCE IN PAIR. 

 CS Reference Zero-filled 
NUFFT CU-Net (80%)* CU-Net Alt-UN IMUNNE 

SSIM 
 

0.223 ± 0.055 0.912 ± 0.033 0.880 ± 0.045 0.925 ± 0.029 0.950 ± 0.021 
NRMSE 

 
0.200 ± 0.042 0.021 ± 0.009 0.032 ± 0.012 0.026 ± 0.009 0.019 ± 0.007 

PSNR (dB) 
 

14.16 ± 1.84 34.10 ± 2.85 30.19 ± 2.94 32.34 ± 2.86 34.88 ± 3.20 
2D Blur 0.362 ± 0.062 0.313 ± 0.048 0.398 ± 0.046 0.418 ± 0.061 0.392 ± 0.062+ 0.385 ± 0.060+ 

FFT Blur 0.223 ± 0.031 0.250 ± 0.031# 0.220 ± 0.027 0.277 ± 0.029 0.249 ± 0.029# 0.241 ± 0.030 
ST-RRED  1.798 ± 0.837 0.286 ± 0.147 0.412 ± 0.221 0.311 ± 0.152 0.215 ± 0.125 
Training time − −  1d 3h 

500 epochs 
7.5h  

500 epochs 
5d 4h 

500+150 ep.** 
3d 8h 

500 epochs 

Inference time 20 s ± 82.6 ms 607 ms ± 6.2 ms 653 ms ± 2.8 ms 653 ms ± 2.8 ms 9.53 s ± 40.4 ms 2.04 s ± 8.1 ms 
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[32], [44], [45], very few strategies apply unrolled networks to 
high-dimensional MRI with non-Cartesian k-space sampling 
patterns. Beside Alt-UN [32], a similar approach was 
proposed for 3D cardiac cine MRI reconstuction employing a 
cascade of backpropagatable data consistency layers 
interleaved with U-Net-based regularizers [30]. However, this 
work focuses on Cartesian k-space data which does not pose 
the additional challenge of NUFFT operators. Other works 
have addressed non-Cartesian k-space sampling patterns but 
mostly in the context of non-dynamic reconstruction [68], 
[69]. 

Since fully sampled imaging data for training DL networks 
is notoriously challenging to obtain, there has been a growing 
research interest to develop unsupervised training techniques 
for reconstruction networks [70], [71]. For example, the dual-
domain self-supervised training [45] divides the k-space 
measurement into disjoint partitions and compares the 
reconstructions of each of the partitions in the image and the 
k-space domains, exploiting self-similarity in both domains in 
the loss function. This strategy achieves competitive 
performance relative to supervised training for low 
acceleration factors 𝑅𝑅 = 2,4. However, for higher 
undersampling ratios, the given k-space coverage is much 
lower, which makes the partitioning strategy unsuitable 
because it would further reduce the available input 
information from the measurement. 

Although a true end-to-end training of the unrolled network 
is impossible due to GPU memory limits, it would be 
conceivable to compare IMUNNE with a pseudo end-to-end 
training approach using gradient checkpointing [72]–[74]. 
This strategy reduces the memory cost by storing only a part 
of the intermediate values required for backpropagation. Then, 
after the error for the stored part has been evaluated, another 
forward pass is required to further calculate backpropagation 
throughout the architecture. In the most extreme case, this 
evaluation can be repeated for each unrolled block, thereby 
reducing the memory cost to 𝑂𝑂(1). This, however, comes at 
the expense of additional computational time to recalculate the 
forward pass 𝑚𝑚 times, leading to a computational time increase 
from 𝑂𝑂(𝑚𝑚) to 𝑂𝑂(𝑚𝑚2). Even though this approach calculates the 
gradient precisely, we decided not to perform this experiment 
since it would take several weeks to train the network in this 
manner for one single hyperparameter setting. 

Finally, implicit networks have been applied to 
undersampled MRI reconstruction [36], [37]. In one of the 
most recent works [36] the authors developed a self-
supervised implicit model that approaches the performance of 
supervised training. However, the method has only been tested 
on multi-coil 2D brain MRI using Cartesian k-space sampling 
with relatively moderate acceleration factors (≤ 8). Since the 
forward pass uses 100 iterations for the fixed-point estimation, 
it cannot be applied to dynamic non-Cartesian k-space data 
directly, especially when the model includes the 
computationally costly NUFFT operator. 

In principle, it is expected that many of the available 
techniques can be combined with IMUNNE to further improve 
its performance. For example, we performed ablations with 

instance and layer normalization layers in the regularizer CU-
Net but did not observe improvements in performance. We did 
not test batch normalization due to its poor performance for 
small batch sizes [75]. Furthermore, IMUNNE can be 
integrated with the self-supervised training approaches 
presented above. In contrast to these techniques, whose core 
objective is to develop a specialized loss term to achieve self-
supervision, our strategy is primarily focused on a special 
backpropagation to update the network weights within the 
architecture itself. Nevertheless, a rigorous evaluation of a 
possible compatibility is necessary which we leave for future 
work. 

V. CONCLUSION 
In conclusion, our novel IMUNNE training strategy 

successfully applies unrolled networks to non-Cartesian, real-
time cine MRI reconstruction, outperforming purely data-
driven approaches. IMUNNE efficiently approximates the 
gradient for weight updates during training, significantly 
reducing memory usage and training time compared to fully 
unrolled networks. This work has the potential to facilitate a 
more widespread adoption of CMR by reducing training time, 
inference time and memory cost of state-of-the-art 
reconstruction methods, thereby lowering the clinical 
hardware requirements and energy consumption necessary for 
state-of-art reconstruction methods. 
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