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Abstract. Fundus fluorescein angiography yields complementary im-
age information when compared to conventional fundus imaging. Angio-
graphic imaging, however, may pose risks of harm to the patient. The
output from both types of imaging have different characteristics, but the
most prominent features of the fundus are shared in both images. Thus,
the question arises if conventional fundus images alone provide enough
information to synthesize an angiographic image. Our research analyzes
the capacity of deep neural networks to synthesize virtual angiographic
images from their conventional fundus counterparts.

1 Introduction

The human retina converts incoming light into a neural signal for further pro-
cessing in the brain. Because the tissue is metabolically active, early symptoms
of diseases such as diabetes are detectable from retinal analysis. Though fundus
cameras are widely used for retinal imaging, conventional color fundus cameras
are not able to image the functional state of retinal circulation [1].

Fluorescent angiographic methodology, in contrast, augments the capability
of conventional fundus imaging. With angiographic imaging, an intravenous, flu-
orescent dye bounds to leukocytes, which excites the molecules when exposed
to blue light. This, in turn, produces a narrow yellow-green light. The enhanced
image highlights different features of the fundus. Thus, it is a routine diagnos-
tic tool for diseases such as pseudophakic cystoid macular edema and diabetic
macular edema [2]. Despite the diagnostic benefits, physicians are increasingly
reluctant to use angiographic imaging technology because of its severe potential
side effects [3].

Conventional color fundus imaging and fluorescence angiography are signifi-
cantly different in appearance. However, many features, such as vessels or gran-
ular structures are shared between both methods. The question then emerges if
an angiographic image can be efficiently estimated purely from the conventional
color image. If possible, this would have the potential to further enhance diagnos-
tic capabilities without an increase in patient risk. A successful synthetization of
an angiographic image could reduce or potentially eliminate the need for actual
angiographic imaging. In addition, a successful outcome in this area also serves
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as a potential solution to the shortage of publicly available angiographic images.
Modern algorithms for image enhancement or segmentation currently cannot be
efficiently trained without access to a large database of angiographic images.
If these images were to be synthesized, an indefinite amount of them could be
produced and therefore allow for greater research in this area.

Image synthesis and translation between different modalities has long been
an area of research in the medical sciences. For example, tomographic images
are a tool not only in diagnosis, but also in dose planning for cancer treatment.
This method, however, often has dangerous potential side effects due to dose
deposition. To circumvent this risk of harm, researchers have explored methods
to generate synthetic CT images from MRI images, as MRI does not pose a risk
to patients. In several studies, deep neural networks have proven to work well
for typical image-translation tasks in medical imaging [4,5].

Recently, similar image translation methods have also been applied to fun-
dus imaging. Because access to fundus images is often restricted, Costa et al. [6]
propose to synthesize fundus images from binary vessel trees in order to create
large databases for other machine-learning tasks. However, to the best of our
knowledge, no current algorithm exists which can estimate fundus fluorescence
angiographic images from conventional color fundus images. In this work, we
address this question by applying the image translation method of Zhu et al. [7]
to this problem. They demonstrate image-to-image translation without the ne-
cessity of paired images from both modalities. While other methods using large
databases of paired images yield superior results [8], similar-sized datasets of
paired conventional and angiographic fundus images are not available. For this
reason, a generative model using paired images cannot be employed.

2 Material and Methods

In computer vision, generative models were long investigated to perform image
synthesis. These networks were outperformed by generative adversarial networks
(GANs) proposed by Goodfellow et al. [9]. Here, the generator is augmented by
a discriminator, which discerns real and synthesized images. During training, the
generator and the discriminator compete in a min-max game, similar to game
theory. The generator network gradually refines its ability to fool the discrim-
inator while the discriminator network gradually fine-tunes its filter to detect
synthesized images. Thus, the GAN can eventually synthesize images which are
indistinguishable from real images.

Recently, Zhu et al. [7] proposed a novel architecture, namely CycleGAN,
translating images between two image domains A and B, without the need for
tightly-coupled pairs. Unlike previous work, this setup is trained solely on the
generated image quality specified by the discriminator. However, this problem is
highly underdetermined and is hardly optimized. This problem is overcome by
enforcing ”cycle-consistency” in the sense that an image from the output domain
should also translate correctly to the input domain. This backwards translation
is ensured by training both a second generator and a discriminator network. Just
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(a) Cycle consistency for angiographic im-
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(b) Cycle consistency for color images.

Fig. 1. The two figures visualize the composition of the loss term used for the training
process of the cycleGAN architecture. IF and IC are the input images for the color
fundus image generator GC and the angiographic image generator GF , respectively.
Similarly, DC and DF denote the respective discriminator networks. Cycle consistency
is enforced so that the backwards translation resembles the input image for both ways,
see LCycleAngio and LCycleColor . The adversarial loss, i.e. the capacity of the network
to distinguish between real and fake images, is modeled by LDC and LDF .

as in a standard GAN, the second generator synthesizes from domain B to A,
while the discriminator then discerns a real image B from a synthesized image
B. For our problem of conventional color and angiographic fundus imaging, this
architecture is visualized in Fig. 1.

2.1 Database

This study includes conventional color and angiographic fundus images from
two datasets. The first provided by Hajeb et al. [10] is publicly available and
contains in total 60 image pairs of 30 normal and 30 abnormal cases with a
resolution of 720 × 576 each. The second dataset is comprised of an unpaired
dataset of conventional and fluorescent images provided by the people’s hospital
of Jiangmen City, China. It contains 319 color and 219 fluorescent images where
the resolution varies between 1380 × 1150 and 2800 × 2300.

In total, 379 color and 279 angiographic images were available in this study.
From this, 365 color and 265 angiographic images are used for training, and 14
images from each group are used for testing. The test images were manually
chosen to be the image pairs with the best visual alignment. Thus, the most
salient image features are visible in both images.

2.2 Preprocessing

For further processing, all images were cropped to be a square with the new
image center being the center of the fundus image. Subsequently, all images were
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downsampled to a resolution of 256 × 256 to keep the network from overfitting
due to the lack of available training data. Color images and angiographic images
are saved in the .JPG file format. Since deep learning networks require large
datasets, data augmentation is a standard tool to synthetically increase the size
of the dataset. In this work, each image was rotated by 90, 180, and 270 degrees,
leading to a fourfold increase of training data. For further data augmentation,
training samples are upscaled to 286 × 286 and subsequently randomly cropped
to 256 × 256 during training.

2.3 Network Architecture

This study uses the publicly available PyTorch implementation of CycleGANs
provided by Zhu et al. [7]. Both generator networks are fully convolutional net-
works and employ the same architecture. Similarly, both discriminator networks
use the same architecture. Generator networks GC and GF first process the im-
age through two consecutive convolutional layers with a stride of 2. Thus, these
convolutions down-sample the photo twice. The image is then subjected to six
residual blocks. Subsequently, the image is brought back to its original size via
two consecutive fractionally-strided convolutions with a stride of 1/2. The dis-
criminator networks DC and DF apply 70×70 PatchGANs randomly selected on
the full resolution images [7]. By learning smaller patches, less parameters have
to be determined, thus making the training process of the discriminator more
robust. GC takes a color image with three channels as input, then produces a
grayscale image with only one channel. Vice versa, GF inputs a grayscale image
with a three channel color image as output. Respective input configurations are
valid for the two discriminator networks.

The network was trained using ADAM with a batch size of 1 [7]. The learning
rate was 0.0002 for the first 100 epochs, and then linearly decreased to reach 0
with epoch 200. Training with the dataset and configuration described above
took about 27 hours using a single GTX 1080.

3 Results

We base our evaluation on how well synthesized images resemble their ground
truth counterparts. Figure 2 shows four instances taken from the test set, where
an accurate registration between the image pairs were available. Each row of
Fig. 2 shows from left to right the real and generated angiographic image, the
input color fundus and last the backwards translated color fundus image to
demonstrate the cycle consistency.

The generated images are hardly to be identified as synthetic images for a
non-medically trained human. Some structures such as vessels are clearly en-
hanced compared to the input color image. However, there are several instances
where patterns or structures in the authentic angiographic images are not syn-
thesized correctly. For example, fine vessel structures, that are clearly visible in
the real angiographic images, are unclear or not present within the synthesized
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Fig. 2. Each row shows from left to right the real and generated angiographic image,
the authentic color image and the reconstructed color image to show cycle consistency.
The first three rows are from dataset [10], the remaining is taken from our own data.

images. Some local structures are located at different positions in the image, as
indicated by the yellow arrow. Furthermore, the overall image brightness and
contrast between ground truth and synthesized images differ.

4 Discussion

We have demonstrated that image translation between color fundus images and
angiographic images is principally possible. For this, the CycleGAN architecture
proposed by [7] was applied on two unpaired datasets containing conventional
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color and angiographic fundus images. The network was trained with downsam-
pled and unpaired fundus images with a resolution of 256 × 256. A qualitative
evaluation with registered image pairs independent from the training set reveals
high overall resemblance with the ground truth, while some small details can-
not be synthesized correctly. We are optimistic that this technique suffices to
engineer robust algorithms for angiographic images by creating large synthetic
databases. However, it remains unclear whether this has the potential to provide
the same level of utility to a medical practitioner. This matter will be subject
to a future clinical study.

Additionally, our research will focus on increasing the generated image reso-
lution from 256 × 256 to state-of-the-art resolution used in medical imaging. A
naive increase of the generator network’s capacity to directly synthesize high-
resolution data will not lead to a success, since only an insufficient amount of
training samples are available. We will investigate patch-based approaches em-
ployed by similar work [6,4] as well as more sophisticated data-augmentation
methods.
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